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Abstract

Exchanges are critical for providing liquidity and price
transparency to markets, but electronic exchanges sometimes
front run their users: because the exchange is in a privileged
position, it can observe incoming orders and insert its own
orders or alter execution to profit, if undetected, risk-free.
There are cryptographic schemes to address front-running, but
they either require an assumption of non-collusion or do not
definitively prevent it, and none can provide the exchange with
useful evidence of good behavior: a transcript the exchange
can show to an offline entity, like a potential new customer or
a regulator, to prove that it is not front running.

We present ClockWork, a practical exchange protocol
which gives an exchange the ability to prove to a user that it
did not front-run their order. In ClockWork, users commit to
and encrypt orders inside a timelock puzzle. By assuming a
lower bound on the time it takes to solve the puzzle, we ensure
that no one, including the exchange, can submit new orders or
selectively drop orders after the batch is fixed, and that users
cannot repudiate committed orders. Users interacting with the
exchange are convinced that the exchange did not front-run,
and the protocol creates a transcript between the exchange
and the users that serves as evidence orders were matched
correctly and has attestations from users who agree they were
not front-run. We implement ClockWork and show that de-
spite using computationally expensive timelock puzzles, it
provides reasonable performance for batch auctions . This is
a useful tradeoff to provide a verifiably correct exchange.

1 Introduction

Cryptocurrency exchanges enable users to purchase and sell
digital assets and account for hundreds of millions of dollars in
transactions every day [12]. Unfortunately, the most popular
of these exchanges operate in low-regulation jurisdictions and
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cryptocurrency exchange operators have been suspected of
stealing users’ funds, wash trading, and front-running [12].

One area where we have little insight is in how often cryp-
tocurrency exchanges are front-running their users. Typically,
an exchange is responsible for collecting and ordering the bid
(offer to sell) and ask (offer to buy) transactions from multiple
users, and then running a matching algorithm to pair bids and
asks. An exchange could manipulate the ordering or insert
new orders based on the incoming stream to advantageously
change the results of the match. This can lead to what is
known as front-running, which is when a broker, exchange,
or other intermediary responsible for transaction ordering ma-
nipulates that ordering for personal benefit. Front-running
leads to a breakdown in market trust and integrity because
some actors have access to information that others do not have
when placing their orders. Though illegal, there are examples
of front-running in exchanges and banks, resulting in fines of
hundreds of millions of dollars [13—15]. For example, HSBC
was fined $63M by the US Department of Justice and Credit
Suisse was fined $135M by the New York State Department
of Financial Services, both for front-running their customers.
Cryptocurrency users have complained of front-running on
exchanges [1, 11]. Because users have no insight into how
these exchanges operate, it is impossible to determine whether
or not these allegations are true.

This paper presents ClockWork, a protocol for a centralized
cryptocurrency exchange that allows the exchange to prove
to a user that it did not front-run their order. In ClockWork,
users submit orders encrypted with a timelock puzzle, which
is a puzzle that requires sequential work to open. ClockWork
uses the timelock puzzles described in Rivest et al. [19]. The
exchange then commits to a batch of orders to match before it
has a chance to decrypt any of the orders, meaning it could not
have obtained any new information from submitted orders to
influence its own orders. Users sign the batch to acknowledge
that the exchange has done so in a timely manner, giving the
exchange a record of its correct execution. Because Clock-
Work uses a timelock puzzle and orders are broadcast, given
enough time, the exchange can eventually reveal any order,



unlike other commit/reveal schemes where a user (or the ex-
change acting like a user) might choose to never reveal an
order based on other revealed orders. This means that all com-
mitted orders must be matched. The transcript of messages
between the exchange and users and the users’ signatures
serve as proof that users agree the exchange did not front-run
their orders in this batch.

Because a user might not open their timelock puzzle, in the
worst case the exchange has to solve a timelock puzzle for
each order in a batch. This can be done in parallel and we
evaluate the performance on orders of various sizes on CPUs
and GPUs.

Previous work by Thorpe and Parkes [21] has aimed to ad-
dress front running by matching under homomorphic encryp-
tion, so that the exchange never sees the orders in cleartext
until they are matched. This requires a third-party bulletin
board that does not collude with the exchange; unfortunately,
no centralized exchanges that we know of are actually built to
work this way in practice. Work by Khalil et al [10] also uses
timelock puzzles to address front running but cannot prevent
it entirely and the exchange cannot produce a transcript to
show others that it has not front run.

To summarize, the contributions of this work are as follows:

e ClockWork, a system for an exchange to prove to a user
that it did not front run their order in a batch auction

e A design for an offline auditor to confirm that known
users were not front run

¢ An implementation of ClockWork and evaluation show-
ing that the scheme is low overhead on clients but re-
quires a core per order in the batch on exchanges, making
it well-suited to GPUs.

2 Background and Related work

Exchange systems. Exchanges are composed of an order-
book, a matching engine, and a settlement layer. The order-
book is a set of outstanding trade requests. The matching
engine runs an order matching algorithm on the orderbook to
produce a set of trade executions (matched orders) and a new
orderbook. The orderbook is generally public; users read it to
place or cancel orders based on their own strategy.

Traditional asset exchanges are usually non-custodial and
thus forgo the settlement layer for a settlement period, defined
by the SEC, that dictates when participants of a trade must
transfer their assets to the other party. This is handled by
brokers who act as custodians. In contrast, the majority of
cryptocurrency exchange volume happens on custodial cryp-
tocurrency exchanges; exchanges hold users’ funds and settle
trades on their behalf [12].

Front-running resistant decentralized exchanges Khalil
et al. [10] describe a protocol based on timelock puzzles and

scoring of exchange behavior to provide resilience to front-
running. This work relies on user-defined metrics to deter-
mine whether or not the exchange is front-running their orders.
Specifically, the user must submit empty orders (orders that
will never match but are semantically valid) to calculate a
“score” to determine whether or not the exchange is front-
running their orders. This requires increased bandwidth and
latency on placing an order if the user would like assurance
that the exchange is not front-running orders. The probability
of an order not being a zero-valued order if the user sends
in k — 1 zero-valued orders and one non zero-valued order is
%. For a user to limit the exchanges’ ability to pick a non-
empty to front-run with a probability of 1% she would need to
send 100 orders, 99 of them empty. In other words, required
bandwidth scales linearly with k.

The Injective Protocol [6] claims to provide a front-running
resistant decentralized exchange service, using Verifiable De-
lay Functions [9] to prevent order relayers from front-running
orders. Their model consists of a set of relayers and a set
of takers, where takers are users which place orders using a
smart contract that is hosted on a sidechain, or a blockchain
that is allows assets from other blockchains to be swapped
in and out and temporarily tracked by this sidechain by use
of a smart contract. This sidechain has a set of validators, of
which it’s assumed that less than % are byzantine. We do not
require a sidechain, nor do we assume that some fraction of
the users or exchange are honest.

Front-running resistant securities exchanges. Thorpe
and Parkes [21] describe the design of a cryptographic se-
curity exchange that uses zero knowledge proofs to show that
the exchange is matching orders correctly. The orderbook
host in this work is a neutral third-party bulletin board respon-
sible for receiving and posting orders. The exchange operator
receives these orders at the same time as other users receiving
updates from the orderbook host. This work only provides
front-running resistance if the orderbook does not collude
with the exchange operator. ClockWork does not have this
requirement.

In other work Parkes et. al. [16] depends on a trusted third
party Time Lapse Cryptography service to perform a simi-
lar function to our timelock puzzles in ClockWork. We do
not require a single service, and provide a concrete instantia-
tion for individuals to use their own timelock puzzles, which
don’t require coordination or a trusted third party. Rabin and
Thorpe provide an instantiation of a distributed Time Lapse
Cryptography service which requires a majority of the par-
ticipants of the service to be honest [18]. ClockWork has
no such requirement, and enjoys even simpler cryptographic
assumptions.

Front-running attacks on blockchains Eskandari,
Moosavi, and Clark [8] categorize front-running attacks on
blockchains and discuss possible solutions and mitigations



for these attacks. This work categorizes front-running attacks
into three template attacks: displacement attacks, insertion
attacks, and suppression attacks. An adversary executing
an insertion attack will observe some transaction and insert
their own transaction or transactions before it. This type of
attack is the most relevant to our work. The next type of
attack is a displacement attack, which occurs in situations
such as domain name registration, where only one transaction
will successfully claim the domain name. In this case, an
adversary wishes to delay any transaction which claims the
domain name so they can claim it for themselves. Finally,
suppression attacks are like displacement attacks but the
attacker only wishes to delay incoming transactions and does
not care whether or not any of their own transactions are
executed - the delay is the point of the attack.

Eskandari et al. then discuss mitigations for front-running
attacks. They discuss mitigations which limit the ability of
some party to order transactions, giving the example of order-
ing transactions by their hashes’ lexicographic ordering. They
note that this is not sufficient for preventing front-running,
but can only make it more difficult depending on the imple-
mentation. This technique would not address the problems
in our setting, where the exchange could arbitrarily drop or
insert orders.

Eskandari et al. review commit/reveal strategies, and also
note the problem with a user potentially not revealing. They
suggest a bonded commit/reveal protocol, where a user locks
up funds in the commit step, and can only unlock those funds
if they execute the reveal step. This is an improvement over
vanilla commit/reveal, but comes with certain downsides:
First, it requires locking up capital, which is costly. Second,
if the adversary were posed to make more from front-running
than the value of the locked funds, they would likely still
take advantage of its ability to not reveal. Finally, there is a
potential for miners to censor users’ reveals and force them
to invoke the penalty. We present a solution which does not
require locking up funds, yet still allows the exchange to
prove it did not front run the user.

Timelock puzzles. Many other works have used timed
primitives for security [2, 3,7]. Our protocol takes advan-
tage of Timelock puzzles [19], which allow a user to publish
data which can only be revealed or decrypted after some fixed
amount of time.

Boneh and Naor introduced in Timed Commitments [4]
a scheme which applies timelock puzzles to blind auctions.
Their application addresses the same problem we are address-
ing in ClockWork: A commit-reveal protocol, where a user
or auctioneer might not open their commitment. Our use of
timelock puzzles is very similar to the one in Timed Commit-
ments. We extend these ideas into a concrete protocol that
combines timelock puzzles with exchange commitments and
a transcript, which lets an exchange offer a record of good
behavior, and users produce evidence of fraud if an exchange

misbehaves. We also implement these ideas in an exchange
to show they are practical.

3 Model
3.1 System Model

Participants. There are n users, uy,uo,...,u,, who want to
trade digital assets. Users register with an exchange, ‘£, where
they create accounts and deposit assets they intend to trade.
Note that this could be a custodial or non-custodial exchange,
our protocol does not distinguish between the two. For sim-
plicity, we assume the exchange is custodial, meaning that to
trade with cryptocurrencies, the user must create a blockchain
transaction which sends the coins to the exchange’s address
and for fiat currencies, the user must make a credit card pay-
ment or bank transfer to the exchange’s account. While trad-
ing, the funds are in control of the exchange. Each user has
a public and private key pair (pk;, sk;) and the exchange has
key pair (pkg, skg).

There are one or many third-party auditors who are inter-
ested in auditing the exchange to make sure it is behaving
appropriately and complying with financial regulations. A
user might be an auditor.

Exchange operation. Users and exchanges have authenti-
cated communication channels. Users create orders, which
are offers to buy or sell a specific amount of one asset for a
specific price. For example, let’s say the previous clearing
price for one Bitcoin was $8. u; might create an order to sell
one Bitcoin for $9. Users send these orders to the exchange
which collects orders, aggregates them into a batch, and then
runs a matching algorithm to match orders. Unlike the con-
tinuous order matching widely used in many crypto-currency
exchanges, our exchange operates in discrete batches. The
orders submitted into a batch are hidden until the batch is
resolved, and orders are not given priority based on the time
within the batch they are received. Once orders are matched,
they are executed; for example, u; might send its order to
‘Eand u; might send an order to buy one Bitcoin for $10. We
say these two orders cross; u; is willing to buy for more than
u;’s sell price. The exchange can match these orders and
execute the trade at a certain price depending on the match-
ing algorithm; the exchange will debit and credit the users’
accounts appropriately.

3.2 Front-running

Despite the batch process treating all orders as arriving si-
multaneously, there are ways the exchange can exploit its
information advantage over the participants to execute trades
that benefit the exchange at the user’s expense. In the above
case, the most straightforward matching algorithm would re-
sult in a clearing price of $9.50; both u; and u ; would be
happy with a trade, as the buyer is buying for less than the



maximum they were willing to pay, and they seller is selling
for more than the minimum were willing to accept.

The exchange can perform a variety of actions to reduce
this benefit to the users. One simple attack would be to delete
the order from u;, and create an order from ug (the exchange
masquerading as a user) to buy at $9.01. The exchange knows
that u; was willing to buy at $10, and u, can offer to sell at
$9.99 the next auction, keeping most of the price difference
in the cross for itself.

The exchange can do this because it sees orders first, before
they are publicly known. It can then selectively place its own
or remove orders after reading their contents.

3.3 Threat Model

Our threat model considers the users, exchange, and auditors.
We assume all parties are computationally bounded and can-
not forge signatures or collide hash functions. In addition,
we assume all participants are limited in terms of sequential
resources; there is a minimum amount of time ¢ to compute
a step, and no participant can compute a step faster than this.
All participants can accurately measure the passage of time.

Exchange. The exchange is responsible for collecting and
matching users’ orders; since users usually pay a fee for this
service, we assume the exchange is motivated to perform this
job for at least some user orders to make money. Other than
that, we model the exchange as malicious. An exchange might
try to manipulate user orders, delay or drop orders, or add its
own orders. An exchange might also try to get information
about how users are planning on trading, or generate many
fake users. We assume the exchange has access to many
parallel computational resources.

Users. Users are interested in trading, but are also interested
in getting any possible advantage. As such, we also model
users as malicious. For example, a user might submit incorrect
data, try to get an advantage by seeing other users’ orders
before they are matched, and try to subvert matching if they
find it is not in their favor. Users might try to prevent the
exchange from progressing and matching orders correctly.
We assume the exchange might collude with users.

Auditor. Auditors might be users participating in the proto-
col, and might try to frame an honest exchange to make it
look as though it is acting maliciously.

3.4 Security Goals

The primary goal of the system is to implement a front run-
ning resistant protocol for placing orders on an exchange;
intuitively this means that the exchange should not know the
contents of users’ orders when it makes the decision to drop
users’ orders or insert or change its own orders.

In order to achieve exchange accountability for front-
running, we would like to achieve the following properties:

1. Blind commitment. The exchange commits to a batch
before any participant, including the exchange, has a
chance to see the contents of the orders in the batch.

2. Binding execution. Once an exchange commits to a
batch, all valid orders in that batch will execute through
a matching algorithm.

3. Liveness. Orders by non-malicious users will be exe-
cuted.

Together, this implies that the exchange cannot front run,
because it has no privileged information about the orders in
the batch when it creates its own orders or modifies the orders
in the batch.

ClockWork’s second goal is to make sure that users can
confirm that this is happening, and to enable the exchange to
provide a third-party verifiable transcript that it did not front
run. Users participating in a batch can verify and attest that
their order was not front-run. An offline auditor can read the
provided transcript, and determine via attestations that certain
users believe the exchange did not front-run in the past.

Note that privacy is not an explicit goal: ultimately, the
contents of all users’ orders are revealed publicly. However,
we wish to maintain privacy during a part of the protocol to
prevent the exchange from front-running.

3.5 Cryptographic tools

Timelock puzzles. A timelock puzzle is a function which re-
quires many sequential steps to compute. We use the repeated
squaring time lock puzzle from [19]. This puzzle can be
created and verified quickly if the trapdoor information is
known, but takes many steps when this private information
is unknown. We describe the way our protocol uses timelock
puzzles in §4.1.

Digital signatures. ClockWork uses digital signatures and
one-time digital signatures: Sig,-(m) — s, where s is the
signature on data m that is able to be verified with C’s public
key. OneTimeSig; (m) — s is the one-time signature on data
m that is able to be verified with G’s public key.

4 Design

As described in §3.4, our goal in ClockWork is to force the
exchange to commit to a batch of orders before it can see the
contents; this naturally lends itself to a commit-reveal scheme.
However, a simple commit-reveal scheme is not enough; this
can lead to cases in which the exchange still has the ability
to front run by selecting only desirable values out of a batch.
It is always possible that some users might be online for the
commit phase, but not the reveal. In this case, the exchange
must be able to mark some of the orders as “not received”
because it cannot open them. However, a malicous exchange



could simply pretend a user was offline and drop undesirable
orders during the reveal phase. Observers would not be able
to tell whether the user truly was not online for the reveal
phase or if the exchange simply ignored the users’ reveal.

One might consider separating the exchange into two par-
ties: an orderbook host and the matching engine. The or-
derbook host is responsible only for collecting commitments
and reveals and posting them publicly. The orderbook host
implements a public bulletin board interface: it is a public,
append-only log. The matching engine then looks at order
commitments and reveals that are posted to the orderbook host
in the relevant timeframe, and matches and executes those
orders.

Unfortunately, this design does not achieve the properties
we want if the orderbook host colludes with a user or with
the exchange. If the orderbook host reveals the orders as the
commitments are opened, the last user still has the choice
of whether or not to reveal her own order, and can do so
after seeing the orders that other users have revealed. An
exchange could pose as a user and submit many different
orders, revealing only the ones that are most advantageous to
it.

Our key insight is that we cannot allow any party to in-
fluence order matching or execution after commitment: we
force all correctly committed orders to be executed even if
the relevant parties disappear or act maliciously later in the
protocol. The rest of this section explains how we achieve
this.

4.1 Timelock puzzles

In order to force open all committed orders, we revisit the idea
of timed-release crypto. Timelock puzzles have an interesting
property in that a party can commit to a value that is not
immediately known, but will be learned some time in the
future.

In ClockWork users encrypt their orders with a key that
is the solution to a timelock puzzle, first introduced in
[19], as well as widely used authenticated encryption from
[20]. We use three functions in our protocol: Timelock,
TimeUnlockFast, and TimeUnlockSlow. These functions in-
corporate cryptographic primitives and functions in addition
to the usage of timelock puzzles.

e m € {0,1}* is the message to be time-lock encrypted
and is of arbitrary length and content.

e t € N is the difficulty parameter which determines
how long the puzzle takes to solve when using
TimeUnlockSlow.

e ¢ €{0,1}" is the time-lock encrypted message and is of
length proportional to m.

e n € Nis the RSA modulus which unlocks c in ¢ steps.

e p € N is a prime factor of n, which unlocks ¢ in O(1)
steps, regarless of ¢.

The functions are as follows:

e Timelock(m,t) — (c,n, p). The Timelock function takes
a plaintext message to be time-locked, as well as the
difficulty parameter ¢. It first randomly generates secret
prime numbers p and ¢, and computes the public modu-
lus n = p* g. This modulus must be large enough that
factorization is computationally infeasible, or approxi-
mately 2000 bits in length. The function next computes
o(n)=(p—1)(g—1), e=2" mod ¢(n), and b = 2°
mod n. Next it takes k = sha256(b) and uses key k to
encrypt m with AES-GCM: ¢ = Ency(m). The function
then returns (c,n, p).

e TimeUnlockFast(¢,c,n, p) — m. If p is available, decryp-
tion of ciphertext ¢ takes no longer than encryption did.
Given n and p, this function computes ¢ = n/p, confirms
that ¢ € N and that both p and ¢ are prime, otherwise re-
turning 0. It then computes ¢(n) = (p—1)(¢g—1). With
¢(n), the function can now compute ¢ =2’ mod ¢(n)
and b = 2° modn just like Timelock did. With k =
sha256(b), this function also uses AES-GCM and com-
putes m = Decy(c) and returns m if the decryption is
successful, 0 otherwise.

e TimeUnlockSlow(z,c,n) — m. If p is not available, the
decryption of m takes much longer to compute. As
neither p nor ¢(n) are efficiently computable from n,
repeated squaring is instead used to compute b = 2%
mod n. This takes ¢ steps of modular exponentiation,
reducing modulo n each time. Once b is computed,
k = sha256(b) allows computing m = Decy(c) and the
function returns m upon successful decryption, @ other-
wise.

We use timelock puzzles to hide users’ orders from the
exchange before the exchange has committed to a set of orders
to match.

While we use the repeated squaring modulo a product of
primes like in the construction described by Rivest et al. [19],
which we will refer to as RSW, we modify the syntax of
interacting with the timelock puzzle as well as the encryption
algorithm and method of creating the key. Our syntax uses
a message as input to the timelock puzzle - this does not
change the internal operation of the timelock puzzle, and the
RSW construction could be defined this way as well. More
importantly, we use AES-GCM rather than RCS5 to encrypt
the message and obtain the ciphertext. The original RSW
construction adds the RC5 key to the value b :=2° (mod n),
whereas we hash the value b and use that as the key for AES.
This way, one will still obtain the key for order decryption.
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Figure 1: ClockWork architecture. An exchange begins a
round (1). Users submit orders encrypted in a timelock puzzle
to an exchange (2), which collects the orders into a batch and
sends them out to users (3). Users may or may not send
the trapdoor to unlock the puzzle quickly (4). The exchange
unlocks the orders (5), and then matches (6) and executes
them (7). The numbered steps correspond to the protocol
described in §4.3

4.2 Sending and matching orders

Figure | shows the high-level architecture and protocol of
ClockWork. In §4.3 we give a concise summary of the proto-
col. Users uy,...,u, create and send orders to the exchange
‘E. Orders in ClockWork are executed in rounds of batches in
order to create a commit point for a set of orders. During a
round, the exchange publishes a new batch id, and the batch
window begins. During this time, users submit orders for the
batch. At the end of the window, the exchange commits to
orders for a batch and gathers evidence that it did not front
run for its transcript. Then, the exchange opens the batch,
after which it can match and execute all correct orders. Note
that opening the batch does not require cooperation from the
users, but it is more efficient if users cooperate.

Setup. Users register with exchange and place funds in de-
posit to trade over multiple rounds. Everyone agrees on a
public difficulty parameter, ¢, where A = t¢ is the minimum
amount of time we wish the puzzle to take to compute. We dis-
cuss how to appropriately set 7 in §4.4. The exchange should
also publish its deterministic matching algorithm M, and its
deterministic rules for determining if an order is well-formed.

Begin round. The exchange generates a unique round num-
ber r for this batch, which it then signs along with ¢ and
broadcasts to all users.

Send orders. Users create orders for this batch; for sim-
plicity of exposition we assume each user creates one order,
though in practice each user might create multiple orders.
Exchanges might have different types of orders. Our only
requirement is that user i’s order, o;, contains enough infor-
mation for the exchange to execute the order completely (it

should not require more interaction with the user) and that the
order includes r. The user encrypts the order inside a timelock
puzzle which, as described in §3.5, yields a ciphertext of the
encrypted order, p; that can be used to compute the answer
to the puzzle quickly, and the modular n. The user sends the
encrypted order and n (which we call puzzle;) and a signature
on this data to the exchange, but keeps p; stored locally. The
user also stores the timestamp of when it sends the order.

Commit. The exchange verifies the signature on each puz-
zle it receives. It selects some subset b, of these puz-
zles to be part of the batch. The exchange sends b, and
OneTimeSigy (b,) to the users selected for the batch. This
serves to select the set of orders that will be executed for this
batch r. Via this signature, the exchange is committing to the
orders, timelock puzzles, and user signatures on the timelock
puzzles. Note that if the exchange wishes to know if it could
advantageously insert new orders or include or drop an order
based on its contents, it would need to have solved orders’
timelock puzzles by now.

Attest to exchange response time. Users who have their
orders selected for the batch sign b, and send their signatures
Sig;(b,) back to the exchange only if they received the b,
within A time of sending puzzle;, which is the minimum
amount of time the user believes it will take to compute the
puzzle. Note that users should not sign if they believe the
exchange has had enough time to solve the timelock puzzle
and decrypt the order before sending out its commitment to
b, and signature. Because of the timelock puzzle, the user
knows that the exchange did not see the contents of her order
before committing to the batch, and thus the exchange could
not have made a decision to insert, drop, or edit any orders
based on the information in her order.

A misbehaving user might not send a valid signature, and
we explain how we tolerate that below. At this step, users
should also send the trapdoor to the puzzle, p;s. However, we
will explain what happens if a user does not.

Open. The exchange needs to make sure the timelock puz-
zle is wellformed; for each submitted p; it should test that p;
and n;/p; are prime. If all users submitted the correct p;’s,
then at this point the exchange can solve the puzzles quickly
using the trapdoor, decrypt all of the orders and proceed with
matching and execution. We call this the fast path. If some
user i did not respond with a p; or using the p; does not de-
crypt the order, then the exchange must solve the timelock
puzzle in puzzle; in order to decrypt i’s order. We call this
the slow path. If, after computing the timelock puzzle, the
order does not decrypt, then the exchange should not include
this order in the batch. Otherwise, even if p; does not work,
if it can solve the timelock puzzle on the slow path it should
include the order. The intuition behind this is that the time at



which the user reveals p; is after the exchange has commit-
ted to the batch. The user should have no way of changing
whether or not an order is accepted after that point.

Assuming all the orders were well-formed (we will discuss
what to do when an order is not well-formed or does not
decrypt), the exchange now has the following:

e A batch b, of puzzle,’s, each of which includes a valid
signature on puzzle; by user i.

e A set of decrypted user orders for round r, one for each
puzzle; in b,.

e A set of user signatures on b,. We might not have every
user’s signature.

The exchange runs matching algorithm % on all valid
decrypted orders, and executes the matched orders.

Order validity. An order contains a batch number, r, and
is only valid for that batch. If the decrypted order contains a
different r, the exchange should not match the order. If the
timelock puzzle does not correctly decrypt an order, there is
no way for any party to decrypt the accompanied encrypted
order, and it cannot be matched. Similarly, if the information
in the decrypted order is purposefully useless data, that cannot
be matched as an order either. The user may have also sub-
mitted an order which is in the correct format, but they do not
have the funds to fulfill. This would also be invalid and can’t
be matched. There are many more cases like this that depend
on the specific order matching rules, and ultimately the valid
orders would be matched and settled by the exchange. All
that we require is that these rules are deterministic and are
published for anyone to verify.

In summary, an order is considered invalid if any of the
following occur:

e The order’s timelock puzzle does not decrypt to a valid
order in the slow path

e The order o; is not well-formed
e The user signature on the order’s puzzle; is not valid

e The user does not have the funds at the exchange to
execute the order

A user does not have to reveal p; or sign b, for the order to be
valid. In fact, even if the user sends a bad p;, if the exchange
can correctly solve the puzzle; in the slow path, it should still
include o;, but not include the bad p; in the transcript.

4.3 Protocol

In summary, the protocol is as follows:

1. ‘E begins a round by broadcasting (z,r)

Exchange starts batch
and broadcasts (t,r)

Exchange aggregates orders and
broadcasts batch b,

Users send exchange timelock
puzzles and signatures

(L

18y 5 15 - 15 Srccy time
L J

u, receives b,
Only sign if ts .~ ts; <A
I

recv

Q T Q
Sreey 18

Figure 2: The timeline for order submission and commitment,
and a safety condition for when a user should sign b,. The
user should only sign if they are confident that less than A
time has passed since the exchange has received their the
order.

2. u; creates order o; and generates Timelock(o;,t) —
(ci, pi,ni). The user saves p; and the current time as ts;
and sends puzzle (c;,n;) and Sig;(c;, n;) to the exchange.

3. E receives (c,n,s) and checks the signature. £ creates
a list of all received puzzles with valid signatures, b,.
It broadcasts b, and OneTimeSig (b;) to all users with
orders in the batch.

4. u; receives (b,,s). She checks that her order is in b,, that
the signature s is valid, and that now —ts; < A. If so, u;
sends £ (p;, Sig;(b,))

5. If E receives p from a user with an order in the batch, it
computes TimeUnlockFast(c,n,z, p) — o. Otherwise, or
if that fails, it computes TimeUnlockSlow(c,n,t) — o. If
this fails, ‘E discards the order.

6. £ matches the remaining valid orders and creates a
transcript, for the batch.

7. ‘E executes the matched orders.

4.4 Setting timelock puzzle difficulty

The exchange must set ¢ appropriately. If ¢ is too small, then
message delay could prevent users from signing b,, as A will
have passed too quickly. If 7 is too large, then slow path
timelock puzzles will take a long time to open, delaying batch
matching and settlement. Note that the exchange does not
have to wait for one batch to settle before starting another
one, but users might prefer to know the outcomes of previous
batches before submitting new orders.

Setting ¢ depends on maximum expected message delay
between participants, 8, and the batch window length, . The
size of the batch window is dependent on the market and par-
ticipants; for example low-latency capital markets might have
® on the order of seconds or hundreds of milliseconds [5].
The longer the window, the higher # must be in order to toler-
ate different puzzle arrival times. Figure 2 shows the safety
condition for the user that sends its order first; ¢,o., — ts] < A.



The exchange does not know exactly when this order was
sent (it does not know ¢s;) but it does know ¢s; must be after
when it broadcast (,r) (¢s9) so the exchange must end the
batch and broadcast b, well before tsg + A — 8 so that b, is
guaranteed to arrive before the first user experiences A time
passing. This means ® < A — & or ¢ should be much greater

o+
than T

4.5 Tolerating misbehaving users

ClockWork tolerates misbehaving users. There are many dif-
ferent ways that a user might misbehave, and here we describe
how ClockWork’s design ensures that these misbehaviors will
either be prevented or detected.

First, a user might submit a malformed order. The exchange
should not match this order but should include the order and
the user’s signature on the order in the transcript so any auditor
can verify the order was malformed. Order validation rules
should be deterministic.

A user might not reveal p; after an exchange has commit-
ted to execute the order by including it in b,. In this case,
the exchange will have to take the slow path and solve the
timelock puzzle in order to decrypt the order. If everything
else about the order is well-formed, then the exchange must
match this order along with all the other orders in the batch.

A user might submit the incorrect p;. In this case, the
exchange must fall back to the slow path, and if the slow path
works, and the order is well-formed, then the exchange must
execute the order, even if it does not decrypt correctly on the
fast path.

If the exchange cannot decrypt the order on the fast or slow
path, then it should not match the order, even if it is able to
eventually obtain access to the plaintext order (e.g., the user
eventually reveals it to the exchange.

A user might do everything correctly but not sign the batch
commitment b,. In this case, the exchange must still include
the user’s order since the exchange committed to it in b,. Un-
fortunately, the exchange will not enjoy the user’s affirmation
that the exchange did not front run, and if all users are mali-
cious, an offline auditor will not be able to determine whether
or not the exchange did front run orders in b,.

Finally, a user might submit a correct order, but the user
might not have the funds on deposit at the exchange to actually
execute the order. In this case, the exchange should mark the
order as such in the transcript and refuse to execute the order.
In a custodial exchange, the exchange would have to open
its books to the auditor to prove that this was in fact the
case. In a non-custodial exchange, the exchange could point
to insufficiently funded channels or smart contracts on the
relevant blockchains.

Algorithm 1 Procedure to validate the transcript for batch r.

1: procedure VERIFY(transcript,., s)
2 b, < transcript,.batch
3 t < transcript,.t
4 r < transcript,.r
5: if - VERIFYSIG(E, transcript,, s) then return false
6 for all (c;,n;,si, pi,o0i,exec;) € b, do
7 if p; then
8 o' « TIMEUNLOCKFAST(c;, n;, ti, pi)
9: if o’ = 0 then return false
10: else
11: 0’ + TIMEUNLOCKSLOW(c;, n;, t;)
12: if exec; then
13: if o' = 0 then return false
14: if =“VERIFYSIG(,(c;,n;),s;) then
15: return false
16: if o’ # o; then return false
17: if “VALIDATEORDER(0;, r) then
18: return false
19: else
20: if VERIFYSIG (i,(c;,n;),s;) then
21 if o' = 0; then
22: if VALIDATEORDER(0;, ) then
23: return false
24: return true

4.6 Transcripts and offline verification

The exchange creates a transcript, for round r. This serves
as a record of execution. The exchange makes this and
OneTimeSig (transcript,.) publicly available (for example, on
its website). Once published, anyone can audit the transcript
to verify that orders were processed correctly and matched.

The transcript consists of the following pieces of informa-
tion:

e 1,7, b, OneTimeSig(b,)
e For each order in b,:

- ci,n,s; = Sig;(ci,n;)

o; if the puzzle decrypted correctly, otherwise nil

pi if the user sent a correct p;, otherwise nil

exec, whether or not the exchange plans to execute
the order

Sig;(b,) if the user sent a signature, otherwise nil

Both users who were online during batch execution and of-
fline auditors might refer to the transcript. Users will confirm
that the exchange is indeed committing to the batch that the
user saw for round r. Any user can check the signatures and
run the puzzles themselves (if necessary) to determine the set
of decrypted orders, and can check each order for validity to



get the set of orders that should be matched. The user can
then run A on the set of valid orders and make sure they
get the same result for their own order as what the exchange
actually executed and settled. If at any point validation of the
transcript fails, the user can publish evidence of this failure
and alert the appropriate authorities. Algorithm | shows the
procedure used to validate the transcript.

Note that the transcript verifier needs to check both exe-
cuted and unexecuted orders. Otherwise, the exchange could
claim orders in b, that should have executed were invalid; the
verifier must see that this is true.

In the protocol described so far, a puzzle with a bad trap-
door p but which decrypts successfully in the slow path must
be executed. This is because p is only revealed later, after the
exchange or a curious user might have had a chance to see
other puzzles. It is too late to insert new orders at this point
(the exchange has already signed the batch) but if we were to
have an incorrect p cause the order not to execute, then the
exchange (or another user) could cancel disadvantageous or-
ders by supplying a bad p. This breaks our binding execution
goal in §3.4. No party should be able to affect whether or not
an order will execute affer the batch commitment point.

This transcript will include puzzle trapdoors for all orders
where users supplied them; in this case, well-formed order
execution is quickly verifiable by a third party. However,
if the user did not supply a trapdoor, the exchange cannot
provide a quickly verifiable proof. The verifier will have to
try to solve the puzzles themselves and confirm whether or
not the puzzle decrypts to a valid order.

When the exchange claims the timelock puzzle was invalid,
the verifier must also try to solve the puzzle to confirm it is
invalid. If it turns out a timelock puzzle the exchange claimed
was bad was well-formed, the exchange has failed verification.
The verifier can raise a concern, but any other verifier would
also have to solve this puzzle to confirm. The exchange’s sig-
nature on the transcript is evidence of an incorrectly dropped
order. In §4.7 we describe how a different type of timelock
puzzle might let us provide faster proofs of incorrectness.

Multiple commitment consequences. A malicious ex-
change might try to partition the set of users to create multiple
batches for the same round r, and choose between the batches
to find the most advantageous. This is another form of front
running. However, this requires the exchange to sign two
different batches, b, and b... Because we require one time sig-
natures, this would reveal the exchange’s private key, which
is evidence of misbehavior.

Assurances. The Clockwork protocol provides assurances
for different entities. For users participating in an auction, it
provides assurance that their order was included in the auction
without knowledge of the order contents. It does not provide
the same assurance with regards to other users’ orders, even

if they provided Sig;(b,); they may have colluded with the
exchange, or they may themselves be the exchange.

This issue of Sybil-users is even more relevant when the
entity that wants assurances is a third party observer that did
not participate in the batch. Observers may want to inspect
the transcripts of previous auctions to see if an exchange is
legitimate in order to decide if they will join and trade on an
exchange. However, a malicious exchange could simulate an
auction, by playing the part of many users and adhering to
the protocol, so that the transcript checks out. In fact, such
a simulation has much lower computational requirements
when compared to a real auction, as the exchange has created
every puzzle and thus knows the private modulus factors.
This means no iterative computation is required, allowing a
malicious exchange to quickly create years worth of historical
auctions.

In order for an observer to be convinced that the transcripts
are valid, they need to know that the users are distinct from
the exchange and trustworthy. In the most direct case, the
observer’s friends use the service, and they don’t think their
friends are colluding with the exchange. Exchanges still
can populate an auction with many Sybil users to give the
appearance of a larger user base, but observers should not be
convinced by large numbers of traders.

On an exchange regulated by a trade association or govern-
ment, auditors may be able to inspect customer identities to
resolve the issue of exchange-created sybils. If an auditor is
convinced that all the participants of an auction are legitimate,
the auction transcript will give evidence that no front-running
occurred during the batch.

4.7 Optimizations

Merkle tree commitments. Instead of sending the entire
batch to each user in step 4 of the protocol (§4.3), the ex-
change can create a merkle tree from the orders in b, and
send each user the root of the tree and an inclusion proof for
their order. This is enough to convince each user that their or-
der has been included in b,, and later on the users can confirm
that the same b, is included in the transcript.

Including the trapdoor in the order. Another optimiza-
tion is to include the trapdoor, p, in the encrypted order.
This changes the signature for the timelock puzzles and de-
crypt functions. The exchange would consider orders with-
out the correct p invalid. The verifier still needs to perform
TimeUnlockSlow on invalid orders to confirm that p is miss-
ing, but it acts as a disincentive for users to omit p as their
orders would be invalid; with this optimization verifiers only
need to run TimeUnlockSlow on orders submitted by mali-
cious users, not honest users with poor network connections.

Verifiable Delay Function proofs. ClockWork uses RSW
[19] timelock puzzles. As described so far, the user reveals



the factoring of the modulus, p;, used to constrcut the time-
lock puzzle, and the exchange publishes this in the transcript.
This means that for an order in the transcript which the ex-
change claims they never received p;, the auditor has to run
the slow path to confirm if the order should be included or
not. ClockWork could instead require the exchange to include
Wesolowski [22] or Pietrzak [17] VDF proofs for the com-
putation done by the exchange to solve puzzles and decrypt
orders. For example, the exchange could include the value
b=2% (mod n) and a proof T; that b actually does equal
2% (mod n). An honest exchange could do this so users may
verify that it has not lied about the timelock puzzle solution,
and the users do not need to compute b in ¢ time on their own.
If an order is not properly formed (e.g. Decrypt,(c) is random
data) This would benefit users in verifying that an order is
not properly formed, as the exchange can give users a b and
a proof T;, users can verify the proof and finally see that the
decryption does in fact return a non well formed order.

5 Security Analysis

To analyze the security of our protocol against front-running,
we first must define the types of attacks and behavior that a
malicious exchange or other adversary could carry out which
we would call “front-running”.

5.1 A security game for online adversaries

We first define a security game for online adversaries. These
adversaries are “online” because they play the part of the
exchange in the protocol and must interact with a batch par-
ticipant, which we will call the challenger. This adversary’s
goal is to front-run the user, and we define this as being able
to tell whether or not this order is a “real” order (not random
data), and the adversary will output 1 if it thinks it is a real
order, and O otherwise. The adversary also would like to
convince the user that it has not been front-run, so we say that
the adversary automatically loses the game if it responds in a
time greater than A.

We say that the adversary succeeds if the FR;, game out-
puts 1, with b = 1 representing the “real” game and b =0
representing the “random” game. The challenger will pick
an order from O, which is the set of well-formed orders, and
we assume these orders have length /. We define a function
CurrentTime which is an oracle that returns the current wall
clock time. The batch parameters r,¢ will be globally avail-
able to the adversary and challenger. We give the challenger
A=ct.

Letting W be the event that the adversary “wins” the game
(the output of FR;, = b), we say that the protocol is secure
against front-running if:

AdviR(a)
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Algorithm 2 FR,,
1: procedure FR;,

2: if » =1 then

3: 0; <+ O

4: else

s: o; & {0,1}/

6: (ciyni, pi) < Timelock(o,t)
7: s < Sig;(ci,n;)

8: starttime < CurrentTime()
9: Send (c¢;,n;, ;) to 4.
10: On receiving b’ from 4:
11: endtime < CurrentTime()
12: if A < (endtime — starttime) then
13: return —b
14: return b’/

5.2  ClockWork’s security

In this section we consider ClockWork’s security against an
adversary that wishes to front-run a batch participant. We
will now assume that there is an adversary which can win
the game with a non-negligible probability, or that there is an
adversary which can determine whether or not the order o; is
a random string in less than A time.

This would mean that, using only n,c the adversary can
determine whether or not the underlying order is real or ran-
dom. Given that n is an RSA modulus and c is the output of a
symmetric encryption algorithm, then either:

1. The adversary can distinguish plaintext o from a random
string using only ciphertext ¢, bypassing the time-lock

2. the adversary can compute some function on c,n in time
less than A which it can use to determine if the order is
real or random.

In the first case, this would imply that the adversary could
break the encryption algorithm used for Encrypt, so because
we assume the encryption algorithm is semantically secure,
this is not possible.

In the second case, the adversary would like to compute the
timelock puzzle in order to distinguish the order from random.
There are two known methods computing k: computing 2%
mod n by repeated squaring or factoring n in order to use the
¢(n) shortcut. Assuming the symmetric encryption is secure,
the only ways the adversary can distinguish the order from
random is either solving timelock puzzle in less than A time,
or factoring the modulus in less than A time. We assume n
to be a safe RSA modulus, and we assume that the adversary
cannot solve the timelock puzzle in less that A time so these
attacks are not possible either.



6 Implementation

We created a framework to implement experimental features
for cryptocurrency exchanges, and have since implemented
the front-running resistant timelock puzzle scheme, where the
exchange is the orderbook host. Our (anonymized) code
is available at https://gitlab.com/clockwork-paper/
clockwork. The exchange responds to queries for the current
auction with a batch ID, and publicly broadcasts auctions it
has committed to matching. It then matches batch auctions
when the timelocked orders have been solved, and publishes
the results. We wrote the library in Go, and implemented
the RSW timelock puzzle scheme in Go as well. The imple-
mentation uses ECDSA signatures and the Noise protocol
framework to provide authenticated and encrypted communi-
cation.

7 Evaluation

In our evaluation we focus on answering a few questions to
do with the scalability and cost of deploying our protocol:

1. In the best case, where all users respond with the time-
lock puzzle solution, does the protocol incur reasonable
overhead?

2. In any other case, where the exchange must solve a
timelock puzzle, what is the overhead for the protocol?

3. If solving many timelock puzzles benefits from utilizing
multiple cores, does it also benefit from GPU use?

7.1 Setup

There were two main system setups which we evaluated our
system on. In order to evaluate the difference in throughput
between a GPU and CPU, we used a Google Cloud Platform
N1-Standard-1 instance equipped with a Tesla V100, a single-
core CPU, and 3.75GB of RAM. All arithmetic operations on
the CPU used the GMP library, whereas the GPU was used to
run many parallel calls to the modular power operation in the
CGBN' library.

To evaluate solution rate with unanimous responses, we
used a machine with a quad-core Intel i7 6700HQ, and 16GB
of RAM. This machine also used the GMP library and the
Golang standard big number package for arithmetic opera-
tions.

7.2 Transcript size

The transcript size depends on the number of participants in
the order batch. Verification requires checking a fixed number
of signatures for each user, and confirming that the results

IThis was created by Nvidia Research, and can be found at https://
github.com/nvlabs/cgbn.
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published by the exchange are actually the result of solving
the timelock puzzles submitted by users. The exact size of
the transcript depends on the parameters chosen for timelock
puzzles and orders. In our implementation, the moduli needed
for timelock puzzles are notably large components of the
transcript. We evaluate the protocol using a 4096-bit modulus.
Given the vast majority of implementations of this protocol
would likely set puzzle parameters so the puzzle is solvable on
the order of minutes or seconds, one could easily use a 2048
or 1024-bit modulus in order to reduce transcript size. This
is reasonable as long as the exchange or another adversary
would have a negligible probability of obtaining the modulus’
factors in the time it takes to solve the timelock puzzle.

7.3 Evaluation of protocol overhead

In order for the system’s performance to be comprehensively
evaluated, there are two scenarios that we are concerned with:
Either every user in the batch responds with a signature and
correct trapdoor, or at least one user is not responsive or re-
sponds with an incorrect trapdoor. If every user responds, then
the exchange does not need to solve any timelock puzzles by
repeated squaring. Given the trapdoor p;, the exchange only
needs to compute 2’ (mod ¢(n;)), and use that value to de-
crypt the order ciphertext.

Unanimous Response Performance. Compared to the
case where not all users submit a signed exchange commit-
ment and trapdoor, the exchange needs to perform exponen-
tially less squarings in order to obtain the key for each user’s
order ciphertext. If this is the case, then our system should
show that increasing the timelock puzzle parameter should
not decrease the puzzle throughput. As shown in Figure 3,
this is certainly the case, with puzzle throughput remaining
roughly the same for large batch sizes while increasing the
timelock puzzle difficulty parameter by multiple orders of
magnitude.

Non-unanimous Response Performance. When not all
users submit a signed exchange commitment and correct trap-
door, the exchange must solve the timelock puzzles which
don’t have trapdoor responses. This means that the latency
for solving a batch should increase linearly with the timelock
puzzle difficulty parameter. The latency should also increase
if there are not enough cores to solve all orders without re-
sponses at once. To evaluate the latency in this case, we vary
the timelock puzzle parameter, number of cores the exchange
has access to, and the number of timelock puzzles in the batch.

We expect the latency to be dependent only on the timelock
puzzle difficulty parameter if the exchange has one or more
core for each order in the batch. It should not take longer to
solve the batch if the exchange has more than one core per
order, than if the exchange has exactly one core per order. If
the exchange does have at least one core per order, then the
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for a varying number of concurrent puzzles being solved.

latency should be dependent on the timelock puzzle difficulty
parameter, and the ratio between the number of orders in the
batch and number of cores available.

7.4 GPU Puzzle Solving Performance

One possible critique of the ClockWork protocol is that since
each order is a timelock puzzle, and the fastest way to solve a
timelock puzzle is fully occupy a CPU with solving the puzzle,
the throughput of the exchange would be bottlenecked by the
number of CPUs it has access to.

Motivation for GPU use. While the fastest way to solve a
single timelock puzzle would be to use a CPU with high clock
speed, it’s reasonable to think that a GPU could instead be
used to obtain high throughput of solving many simultaneous
puzzles. It would seem that a GPU is well suited to high
throughput timelock puzzle evaluation as the puzzles have the
same time parameter, and the same operations are being run
on each puzzle. Furthermore, latency increases are not very
problematic for this system: they do not decrease the security
of the system, but instead just increase the delay between
when an order is placed and when the results of the auction
are published.

GPUs fall short. We evaluate the difference in throughput
for a GPU and CPU in Figure 3. This test computed the
RSW puzzles b = 2% (mod N), where ¢ = 16384, and N
is a 4096 bit RSA modulus. While the GPU does perform
slightly better than the CPU, it may not actually yield higher
throughput unless significant optimizations are made to the
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arithmetic library and timelock puzzle solution code used.
The Nvidia Tesla V100 was able to beat the single-core CPU
on the GCP instance in throughput, however it did not have a
significant advantage: when given 100,0000 puzzles, the CPU
was solving puzzles entirely sequentially due to its single
core, and the GPU had less than twice the throughput of
the CPU. This could be for a variety of reasons - GMP is
an exceptionally fast library for performing the arithmetic
operations needed for timelock puzzle evaluation, and the
library used for arithmetic on the GPU would need much
more optimization in order to keep up.

8 Future work

In ClockWork, the exchange has to, in the worst case, per-
form an evaluation of a timelock puzzle for every order in
a batch. In our protocol, we require O(n) processors for n
orders to address this worst case; the exchange must solve the
puzzles in parallel. Though we investigated the use of GPUs
and found them wanting, there might be other customized
hardware that makes this cheaper to execute in parallel.

In order to verify a batch was processed correctly, any
auditor must look at every order in the batch. It might be
possible for the exchange to provide a more compact proof of
correct execution instead of requiring auditors to perform the
computation themselves.

Finally, ClockWork does not provide privacy; eventually
all orders become public. It might be desirable to have un-
matched orders stay private. Future work could investigate
using cryptographic primitives that do not unlock unless the
order is matched.



9 Conclusion

We introduce ClockWork, an exchange protocol for producing
proofs of non front-running. ClockWork provides a method
for the exchange to prove to a user that it did not front-run
their order, while creating a transcript an exchange can use
to show an auditor to claim it did not front-run. We hope this
encourages more work in auditable and verifiable financial
infrastructure.
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