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Introduction

As Central Bank Digital Currency (CBDC) research around the world progresses, more
countries are exploring use cases for programmability and smart contracts [26,9,1,13].
However, programmable money and programmability in CBDCs are broad terms and
there are at least three points of confusion in how to think about, design, and implement
programmability: First, programmability is often mistakenly assumed to only be possible
in decentralized systems, in conjunction with blockchain technology or distributed ledger
technology. Second, programmable money is often conflated with restricted or
purpose-bound money – the idea of placing restrictions on how money might be spent
by a user, like restricting welfare benefits so they can only be used to purchase items in
approved categories [25]. There are other use cases for programmability, like
payment-vs-payment and escrow, and restricted money is primarily enabled by
permissioning and can be done in the absence of programmability. Third, there is a lack
of a systemic framework and vocabulary to discuss different choices in programmability
and the tradeoffs and risks of these different choices.

This paper aims to address these concerns by defining programmable money in a more
general context, discussing what can be learned about programmable money
implementation choices from cryptocurrencies, and providing a framework to discuss
programmability choices in other centralized contexts. We offer a definition of
programmable money, explain what additional guarantees blockchain technology
provides when combined with programmability (though it does not necessarily need to
be), and discuss tradeoffs across different locations in the architecture stack where
programmability might be implemented: Inside the core system itself, whether (1) via a
generic runtime to provide execution of programs supplied by users or clients, also
known as smart contracts or (2) by being hard coded directly into the system software.
Or, outside the core system software, whether in (3) client-side programs that interact
with the system, but do not run inside of it, or (4) with intermediaries that might have
more privileged access. We further break down (1) into the types of client-supplied
programs supported into various levels depending on the functionality obtained by the
offered programmability primitives and discuss the benefits and risks of each level.
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The Rise of Programmable Money

Computers are programmable because one can write carefully formatted instructions
which instruct the computer on how to execute a specific task. The computer provides
an execution environment that loads inputs and performs the instructions, modifying
state and producing results for the caller.1 Computers today can easily execute programs
on databases that store account balances and ledger information for monetary systems.
Databases can even embed programmability directly in the form of stored procedures.
So what does it mean for a digital asset to be programmable, beyond the type of
programmability we already have with generic data records? What we first saw with
cryptocurrencies was the unique combination of the following: First, cryptocurrencies
have a rich set of instructions (script or a smart contract programming language which
compiles to bytecode) in which people can write programs. Second, the monetary asset
itself is attached to programs written in that language of instructions, and those
conditions govern how the asset is spent. Third, the rules of execution are agreed upon
and enforced by a decentralized or distributed network instead of by a single actor or
computer, which leads to belief and faith by all parties that the program will execute as
specified. Fourth, the instructions are available to use by anyone transacting in the
monetary asset so that a user can write her own programs governing her asset’s
transfer. This combination of factors enables a rich ecosystem of applications to be built
on top of the transfer of monetary assets that go beyond what we have seen in the
traditional financial system.

For example, in Bitcoin, users can write programs to govern the transfer of bitcoins in
Bitcoin Script. Instead of merely transferring bitcoin to a new address, they can transfer
it into an output encumbered with a script, which specifies conditions that govern the
future transfer of the bitcoin. This script will be executed by the Bitcoin network of
computers during the process of validating the Bitcoin blockchain. Each Bitcoin node
runs a script interpreter which evaluates these scripts and is part of the Bitcoin protocol.
Because the incentives of the protocol encourage nodes to follow the same ruleset, they
will all execute the script as specified by the script interpreter, and achieve the same
result. Finally, anyone who holds Bitcoin (and can pay sufficient fees) can create a new
transaction spending it to a valid script of their choice, to be executed by the network.
Ethereum operates in a similar fashion with the Ethereum Virtual Machine, but with a
more expressive instruction set and data model, facilitating the execution of more
complex smart contracts that can store arbitrary state and that can be used by many
users.

Defining Programmable Money

Lee [5] describes programmable money as “  a unified, coherent product that

1 “State” refers to what’s stored in the system’s memory or on disk, for example in a database. On
the nodes running a blockchain this might include account balances, data in smart contracts, or a
history of all transactions.
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encapsulates both the storage of digital value and programmability of that value while
providing a coherence guarantee.”2 We build on this definition, and our discussion of
programmability in cryptocurrencies above, to define programmable money as
consisting of four parts:

1. A well-defined format for the digital storage of value and data,
2. A well-defined, expressive set of programmable instructions for writing

programs which access that data and specify the conditions for the movement
of that value,

3. A context or environment in which those programs are executed and enforced
which provides some coherence guarantee that the instructions will execute as
specified. In particular, the coherence guarantee should convince participants or
a third party that the program will execute as specified,

4. The permissioning or rules around who is allowed to create, call and verify the
execution of programs.

Different programmable money systems may make different choices within the bounds
of this definition, for example, on the exact form of data storage or the specific
instruction sets provided.

In cryptocurrencies, the coherence guarantee is provided by virtue of the fact that the
network is decentralized, and we assume a majority or supermajority of the participants
will execute the protocol faithfully, and thus execute the contracts as specified. But a
monetary system can provide programmable money even if it is not a decentralized
cryptocurrency. The coherence guarantee might be provided by a centralized actor or
intermediaries instead of a decentralized network, and it might be governed by
regulatory rules instead of technical code (note this might affect people’s belief the
program will always execute as specified). It might also have some conditions on who is
allowed to submit programs.

Some policymakers are interested in programmability because they think it can be used
to enforce restrictions on how money can be spent and used [25]. However, these two
properties– programmability and use restrictions–are separate. Indeed, one can have a
restricted-use non-programmable money (e.g. by adding restrictions to mandated
banking APIs), and one can have unrestricted-use programmable money (e.g., by
implementing full-featured smart contracts in an openly accessible system). Restrictions
attached to users’ funds can exist both inside and outside cryptocurrencies and CBDCs,
whether they are programmable or not. Further discussion on restricted or
purpose-bound money is outside the scope of this paper.3

3 Note that applying use-case restrictions on how money can be spent would negatively affect the
fungibility, trustworthiness, and stability of the currency and weaken its network effects.

2 Lee defines a coherence guarantee as a mechanism guaranteeing that the technical
components of the programmable money product are "inseparable" and that those components
are consistently functional, such that the product is stable and coherent for users
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Programmable money vs. APIs

Today’s financial systems sometimes offer Application Program Interfaces, or APIs. In a
system with APIs, the system defines some language of requests and promises clients
they will give certain responses, depending on how the API is invoked. Note that
cryptocurrencies also have services that offer APIs; for example, the most popular API
service in the Ethereum ecosystem is Infura, which many applications use to read the
state of the blockchain and submit transactions, instead of running their own nodes in
the decentralized network, which is more difficult. The line between APIs and a more
programmable system is not entirely clear, but there are some differences: The systems
behind APIs are often not open source (making it hard to convince users they will always
operate correctly), nor are the APIs always available to anyone to use. APIs have limited
functionality, and API users have to rely on the API provider to continue to maintain the
functionality as promised; for example, an API provider might decide to shut off the
service or change how the API operates similar to how Twitter changed APIs for
developers in 2012 [18]. APIs also have the downside that they are usually use-case
specific, lack composability, and need to be monitored to ensure they actually adhere to
their API documentation [23]. In contrast, consider decentralized systems offering smart
contracts: They are open source and are permissionless, so not only can anyone use
them, but anyone can also join the network to validate that they are executing properly.
They can support arbitrary code, and, at least in theory, are difficult to shut down.

The table below compares US bank accounts and cryptocurrencies along the features of
programmable money that we defined above.

Storage Ruleset Environment Permissioning

US Bank
accounts

Internal bank
database
representing
accounting of
liabilities to users;
the data format is
not widely known.
Users can only
access their own
data.

Third parties (for
example, Plaid) call
limited, high-level
bank-provided API
calls if they exist, or
screen scrape.[16]

There is no public verifiability,
the bank could reverse or
alter execution unilaterally.
Users might have recourse
via the legal system and
regulation via government
agencies.

Access to APIs
and data is
permissioned
by the bank.
Users provide
screen scraping
credentials to
third parties.

Cryptocu
-rrencies

Open blockchain
of records, which
might include
unspent outputs,
account balances,
smart contracts, or
other data. Format
is well-defined.

More expressive than
APIs. A virtual
machine or script
interpreter executing
fine-grained
bytecode. The ruleset
available is encoded
in the blockchain
software.

Distributed network
consisting of nodes that
agree on the ruleset and
execute every smart contract.
Anyone with a powerful
enough computer can run a
full node and verify correct
execution. Altering execution
significantly would require
forking the network.

Open to all
users,
permissioned
by transaction
fees (individual
smart contracts
may define their
own
permissioning)

Table 1. Comparing two existing products, US bank accounts and cryptocurrencies across the features
of our definition of programmability. US bank accounts might provide APIs but do not provide

programmable money.

6

https://www.zotero.org/google-docs/?yK6Zf9


Another example of APIs is Open Banking. Money is stored in the form of database
entries on computers run by banks, and any programmability offered is done by
exposing this database through APIs to specific entities. These APIs are built separately
from the database and then are connected through an application running business
logic. The UK's Second Payment System Directive (commonly known as Open Banking
or PSD2) specifies how regulated third parties can initiate payments directly from
customer payment accounts (assuming consent) and access customer data to provide
an overview of a customer’s payment accounts with different banks in one place. In the
UK, the coherence guarantee is provided by a regulated financial institution, who is
mandated to provide API access to customer data by the Open Banking Implementation
Entity under the purview of the Competitions and Market Authority (CMA).

We argue a centralized system offering programmable money goes beyond existing
financial APIs in the following ways. It will:

a) Provide a high level of commonality and interoperability across programs,
b) Have a more expressive ruleset that facilitates outcomes that might rely on

future, complex changes to state,
c) Include a coherence guarantee around execution that users can rely on for

important financial transactions, and
d) Provide access to many clients and users.
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Programmable money via client-supplied
programs, or smart contracts

Cryptocurrencies showed us a unique way of implementing programmable money – via
the on-chain execution of programs, supplied by users, in a virtual environment. Nodes
running the blockchain network have execution environments that will execute these
programs. For example, Bitcoin exposes Bitcoin script to users, and in Ethereum, users
can write more expressive smart contracts which are executed in the Ethereum Virtual
Machine (EVM). Depending on the expressivity, it’s possible to create new
representations of digital assets or tokens inside of these programs; for example, in
Ethereum, there are smart contracts that create ERC-20 tokens like stablecoins.

As described earlier, it’s not clear a “chain” is needed; a centralized system could still
support user- or client-provided programs, or smart contracts, without being
blockchain-based or even keeping a chain or ledger of transactions (though this might
have effects on users’ trust of the coherence guarantee). It should, however, have a
common execution ruleset which supports a certain set of programmability primitives.
The set of primitives defined and available in programs define the interface between the
system and the user. We classify these available primitives and the representation of the
digital form of money on a linear spectrum from the simplest (Level 1) to the most
complex (Level 3).

Levels of programmability in smart contracts

Level 1: Signatures tied to fund ownership

Digital assets use digital signatures to prove that a user has the ability to move the
funds; in its simplest form, the funds are tied to an address derived from a public key,
and a user presents the system with a digital signature on a spending transaction,
computed using the corresponding private key. Signatures are an authentication
mechanism; one could use signatures with a system that only provides APIs. However,
Level 1 programmability goes beyond this by tying ownership of funds (representation of
money) to authentication via public key cryptography, i.e., the system verifies signatures
for each transaction to transfer funds, and knowledge of the corresponding private key is
considered ownership of the asset. Level 1 programmability can be enabled with a
UTXO-based or account balance system. Using public key cryptography allows users to
prove ownership and custody at the end-user level, without needing to involve an
intermediary for authentication. If the signature scheme supports it, this enables new
programmability use cases such as multi-signature (e.g., both Alice and Bob's
signatures are needed to authorize any spending and other more complicated m of n
transactions) and limited types of smart contracts, such as those detailed in scriptless
scripts [24]. Importantly, note that even the choice of using a specific digital signature
scheme might enable minimal programmability.

8



Zcash shielded transactions, Monero, and Mimblewimble implement Level 1
programmability. All three of these cryptocurrencies aim to preserve transaction privacy
and, as a result, do not have scripts or only support minimal scripting.4

A Level 1.5 system can be thought of as adding a valid time field to transactions or
allowing actions to take place depending on when they are presented to the system.
Some use cases that can be enabled with a Level 1.5 system include time-locked
transactions, which allow a transaction to be pending and replaceable until an
agreed-upon future time, and cross-chain atomic swaps. There is ongoing research
being done to enable this functionality in Mimblewimble [2].

Level 2: Output scripts

This refers to a system where value is tied to the conditions specified in a script (which
might require signatures from keys similar to Level 1).

Bitcoin is an example of a Level 2 system. In systems like Bitcoin, every (non-coinbase)
transaction has one or more inputs and outputs, and inputs are previously created
transaction outputs. Each output has a small predicate detailing when the output can be
spent, called a script. The state of the system is all the unspent funds and spending
scripts associated with them (called the set of unspent transaction outputs, or UTXO
set). Transactions consume unspent outputs (inputs) and create new unspent outputs
once they are confirmed.

Scripts can require signatures from public keys or other conditions to be met, such as
time locks. Generally, output scripts cannot reference data outside themselves (e.g.,
other transactions or balances; one cannot write "send to address B half the amount in
address A" without knowing the amounts in each address).

Level 2 systems could support use cases such as simple predicates for spendability
(Signature A is valid if Alice’s money moves to Bob), escrow, assurance contracts (with
oracles; though oracles can be used at all levels), atomic cross-chain swaps, payment
channels and Layer 2 networks, derivatives contracts, and other smart contracts with a
predetermined set of outcomes.

There have been modifications and extensions to Bitcoin’s limited scripting model. For
example in Celestia, UTXO scripts can access other data [12], and there are discussions
in Bitcoin to expand the expressiveness of output scripts by considering additional script
operations that provide covenants. A scripting language that supports covenants would
allow script authors to restrict the set of scripts that a coin could be further spent to [22].
Some of these techniques enable more complex programs that can be expressed across
coin spends. In Bitcoin, transactions are deterministic and usually once valid will
continue to be valid regardless of external events (depending only on the existence of

4 The presence of scripts is one of many things that could reduce privacy and distinguish
transactions.
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the inputs being spent), but additions to the scripting language could change that.
Adding in new functionality, like covenants or permitting access to data outside their
containing transactions, brings the expressiveness of output scripts closer to Level 3, as
described in the next section.

Level 3: Stateful smart contracts

Level 3 programmability allows for the execution of more expressive client-supplied
code and a high degree of introspection, such that the programs executing have access
to the full global state of the system. The important features are access to a global state
space, the ability to modify things in that state, composability, and pre-specified vs.
dynamic allocation of resources.

These provide the most expressivity and fullest set of possible programs and
functionality. As an example, a program could query the balances of several other users,
compute the average balance, and send funds depending on whether that average
meets a threshold. Another example is a decentralized exchange to which users can
submit bids and asks, and the contract can execute orders to transfer ownership of
tokens when the orders match. Note that the program would not have full custody of the
assets being traded and could only transfer assets if orders match, which is different to
how centralized cryptocurrency exchanges operate today.

Ethereum is an example of a Level 3 system. The EVM gives developers a model of a
shared global computer on which to execute their smart contract code. The global state
space is shared and is mutable – programs can edit the state, as opposed to systems
like Bitcoin that only offer destroy/create semantics over immutable objects. In addition,
smart contracts are composable – one contract can call another one and use its results.
But even within Level 3 systems, there is a question of how expressive the language is
and what kinds of programs users can write. For example, in Solana, users have to
pre-specify the data records their program will touch, while in Ethereum, this can be
determined dynamically at runtime. This makes it easier to write smart contracts that can
be composed in the future on Ethereum, whereas in Solana smart contracts, authors
have to do more up-front work in determining exactly how their smart contracts might be
used, and their composability might be limited. However, because of this
pre-specification, the Solana nodes know which transactions will conflict and can
execute non-conflicting transactions in parallel, getting better performance. It also
improves security to limit expressiveness and state access.

Consideration for policymakers

Smart contracts might be more useful to users of a CBDC to the extent that it provides a
strong coherence guarantee: users can make credible, complex commitments to each
other, which will be enforced by the CBDC operator, and programs could be reliable and
execute as designed, without intervention by the CBDC operator. Much as users need to
trust CBDC operators not to use their control of the system to change monetary
balances for public trust, they also should believe the operator will execute programs as
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submitted. An open question is how much access individual users might have to a
CBDC’s programmability environment; this question applies to two dimensions. First,
whether or not users can read the entirety of the state of the digital currency, including
the programs, as they can with public blockchains. This might not be feasible for privacy
reasons or if the system is processing many transactions per second and the size of the
state is large. Without read access to the state, writing composable programs or getting
strong coherence guarantees might be difficult. The second dimension is that there
might be some sort of permissioning around who can create or call programs; we
discuss this in the intermediated programmability section below.

Stateful smart contracts can be complex with many security considerations, and there
are many cases when design flaws, bugs, and other hacks have resulted in a large
number of cryptocurrencies being taken against the will and intent of the smart contract
authors but using transactions that do adhere to the program code [3,13,11,12,17].
Essentially, the "hacks" obey the letter of the law while violating the spirit [19].

Policymakers and centralized digital currency operators would need to define a dispute
resolution process and comprehensive policy framework to determine when and in what
capacity an operator might intervene in cases of these hacks. In essence, the entity
providing the coherence guarantee is at risk of pressure to reverse that guarantee if
things go wrong. In the case of a CBDC, this might put undue pressure on the central
bank. Rulemakers for these systems will need to determine if they side with the spirit of
the program or the letter of the program. Reliably siding with the spirit of the program
and returning funds to those hacked, in the case of smart contracts running on a
centralized system, could create a perverse incentive for program designers to focus
less on the security of their smart contracts due to the implicit guarantee being provided
by the centralized operator. On the other hand, by adhering to the letter of the law and
not returning funds in case of hacks, program designers may focus more on program
security but may also expend energy lobbying for changes to the rules which govern the
operator's stance. The situation with the Parity multi-sig smart contract provides an
analog to this scenario where Parity developers stopped all work on the Ethereum
ecosystem since Ethereum refused to update the system to recover lost funds [10,5].

While Levels 1 and 2 can present similar considerations to operators, they do so to a
lesser extent. With fewer composable and complex smart contracts, there are fewer
unexpected results that users may want operators to adjudicate.
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Other locations for programmability

There can be features of programmability in different places in the overall digital currency
system. For example, users can write locally-executing scripts to create, sign, and
broadcast transactions to a blockchain network. When designing a new digital asset,
one can consider providing programmability in different places in the architecture stack.
We define three additional locations and explain their benefits and drawbacks:
hardcoded within the system rules, with clients, or with intermediaries.

Within-system programmability

We define within-system programmability as the rules embedded within the code of the
system itself, separate from any scripting or virtual machine environment for client-facing
smart contracts. For example, Bitcoin and Ethereum both have rules for issuance, which
is in what quantity and on what schedule new coins should be created; these are not
subject to user-programming, or even evaluated in the EVM or the Bitcoin script
interpreter. Ethereum also has rules on the amount of gas fees that must be paid for a
transaction to execute.

In both of these examples, the software running on nodes in the decentralized network
enforces these rules; the rules are also known as the consensus rules of the system.5

Users can run validating nodes that verify that the system rules they expect are being
applied to the version of the blockchain they see and discard any blockchain which does
not follow the expected consensus rules; this is, for example, how the issuance
limitation in Bitcoin is enforced. Much of how the blockchain should operate is specified
within the consensus rules – including the data format for value (unspent transaction
outputs tied to signatures, account balances, etc) and the types of programmable
instructions available.

In decentralized systems users enjoy public verifiability, but coordinating a change to the
within-system rules in a decentralized system can be challenging. Any user can propose
a protocol change with new software, and if a majority of miners (or validators, we use
the two interchangeably) decide to run the new software and it is backward-compatible
(a soft fork), everyone’s software on the network will automatically accept the change,
and the system will stay in agreement. If the new software is not backward-compatible
(a hard fork), the network will split into two or more chains unless 100% of miners have
adopted the new code.

In a centralized currency where end-users do not run validating nodes, they must trust
the operator of the system to operate according to the described consensus rules and to
not devalue or destroy their data and funds. This is because whoever is running the
system, whether it is a single operator or a small group of DLT operators, would have full

5 Note that the consensus rules also include the ruleset of the environment for validating
and executing scripts or smart contracts.
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control over the system's state and consensus rules and could unilaterally make
decisions about system operation. This makes it easier to upgrade the system as
needed but comes at the cost of public verifiability by users.

Both systems need some level of trust but what’s different is the party that enforces the
coherence guarantee – in the case of a cryptocurrency, it’s the decentralized network of
users and miners running validating nodes, meaning users can observe the coherence
guarantee themselves, while in a centralized CBDC it is the CBDC operator [15]. This
makes it harder to provide user enforceability, observability, verifiability, and auditability.
One might consider centralized CBDC designs that offer publicly-verifiable proofs of
correct program execution to provide a better coherence guarantee, though users would
only be able to note if the coherence guarantee was violated, they would not be able to
participate and enforce the coherence guarantee directly.

Note that a system with only within-system programmability, though it might be useful,
does not meet our definition of offering “programmable money” since users cannot
easily create new programs without the operator agreeing to change the rules of the
entire system.

Consideration for policymakers

A centralized CBDC implementation with a lot of within-system programmability would
require a highly trusted and responsible operator or set of operators with strong
governance. Examples of within-system programmability in a CBDC could include
programming automatic interest rates, programming restrictions on how money can be
spent (like restricting spending to only addresses on an allow-list), creating money that
has an expiration date, and defining the velocity of currency issuance. However, these
are features that affect the flexibility and utility of the money and might affect public
trust. The within-system programmability inherent in a CBDC might give the operator too
much fine-grained control over the currency people use. Any use of that control would
need to be predictable and justifiable to maintain public trust. The question of how much
within-system programmability to use is central to how a CBDC fits into the world of
money. Credible oversight authorities combined with regulatory and policy frameworks
may help set up a basis for a reliable CBDC free from unanticipated within-system
changes.

Client-side programmability

We define client side programmability as the ability to write and execute code on the
end-user device or browser. In contrast to smart contracts, this code does not execute
in a shared execution environment (though it might call other code that does so). An
example of doing this in the traditional financial system is the following: If Alice needs to
pay Bob recurring monthly payments, she could write up a script and set up a
scheduled task on her computer that automatically logs into her bank account on her
browser with her username and password and executes a transfer every month; Alice
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has automated the actions an end-user might take manually on her own browser.
Relying on browser interfaces can be unreliable; for example if the bank changes the
format of their website, Alice’s script might no longer work. The BTCPay Server is
another example of this; it’s a self-hosted, open-source, non-custodial cryptocurrency
payment processor that helps merchants automate invoicing and transaction flows,
receiving peer-to-peer payments directly to their wallets.

Client-side programmability can be made more powerful when combined with a shared
execution environment for programmability, even if it is very simple. For example, users
could use a threshold signature scheme to implement multi-sig in a Level 1
cryptocurrency. The clients can jointly create both a public key and later a signature that
the Level 1 chain can validate without needing to know that they reference multiple keys;
in fact, the use of threshold signatures is undetectable to the Level 1 chain. Client-side
programmability can reduce server load (whether a database or blockchain node);
instead of evaluating a longer program, the server just validates what looks like a normal
spend transaction, and the complexity is pushed to the participating clients. This also
prevents the operator from having visibility into client-side operations. Client-side
programmability has the drawback of requiring more complexity on the side of the
clients and is not always more efficient. It is also less composable because the program
isn’t running in a shared state space, and not all functionality can be implemented purely
with client-side programmability. One way of thinking about it is that a client-side
program is just acting on behalf of its user, and thus cannot act as an arbiter between
different parties.

Consideration for policymakers

Users should be allowed to automate software running on their own devices. Note that
even providing a very simple interface in a digital currency–cryptographic signatures–can
provide an opportunity for enhanced client-side programmability. Central bankers and
policymakers need to think about how much client-side programmability is possible in a
CBDC system and who bears responsibility in case of failure.

Intermediated programmability

Many central banks are considering intermediated CBDCs, where users access CBDC
partially or wholly through an intermediary such as a payment service provider (PSP) or
commercial bank. The possible design space around intermediated CBDCs is not yet
fully defined, and forms of intermediation surface the question of how to maintain a
direct liability on the central bank with intermediation and what additional functionality
compared to the current system might be provided [19].

Commercial banks could offer the services of a “programmable bank” that uses the
same storage as bank accounts but makes that format, and a rich ruleset of
programmable instructions that operates on that data, available to all of its users.
Developers could write, and users could run, expressive programs governing the
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movement of their funds and perhaps even share state to create smart contracts that
multiple users can access. An open question is how the commercial bank would provide
a coherence guarantee – users might just have to trust the bank to continue to provide
this functionality, or policymakers could create rules or regulation. Another question is
how to make sure different intermediaries use the same standards, and how to
encourage intermediaries to provide cross-organization messaging, in order to prevent
walled gardens. Open banking APIs are a step in the direction for a programmable bank,
with regulation providing the coherence guarantee. However, in addition to the other
downsides of APIs detailed above, open banking APIs are usually very limited in
functionality compared to smart contracts. They are also permissioned by a regulated
authority that determines who can access them.

Consideration for policymakers

Much more research needs to be done around programmability and intermediation;
however, we list a few of the dimensions that policymakers and researchers can begin to
consider:

a. Who provides the execution environment in such a model, and how is the
coherence guarantee enforced? Some options could include a single shared
execution environment for the CBDC (implementing any of the three levels
described above) or a model where each bank or PSP has its own separate
state and execution space for contract execution. A single shared execution
environment would make it easier for smart contracts and other transactions to
reference each other, supporting seamless interactions between users using
different intermediaries. With separate execution environments, system
operators need to consider the level and mechanism of interaction between
them. One might imagine a situation like the one we have with different
blockchains today, where people create bridges to execute functionality across
blockchains; unfortunately these have, in practice, suffered from hacks. Lessons
from modular blockchain designs, which are trying to support different execution
environments with some shared state, might help think through programmability
in this model. Another drawback of intermediary-specific execution
environments is relying on the compliance of these institutions to provide the
coherence guarantee, which is not always assured.

b. Who is permissioned to create new programs or smart contracts in such a
model? A CBDC system could require users to have the approval of an
intermediary in order to create and submit new smart contracts in a single
shared execution environment. Another approach could be that every bank or
PSP operating its own environment defines its own user approval process to
write programs. These options might hinder innovation since intermediaries
could act as gatekeepers.

c. What authentication or certification do intermediaries provide for users
creating and accessing these smart contracts? If there are transactions and
programs that require endorsement to run in the execution environment, the
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intermediaries could offer endorsement on a per-user, a per-transaction, or a
more fine-grained basis.
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Related Work

Many have discussed use cases and potential benefits and risks of programmability in
digital payments [26,9,1]. Amazon Web Services and Oliver Wyman [14] adapt the
Ethereum technology stack [7] and also discuss how programmability can occur in
“different layers of a technology stack” but don’t discuss the differences in guarantees
across locations and the ruleset of programmable instructions permitted based on
system design. OMFIF and Bank of Japan discuss different options for programmability,
including differentiating between programmable money, which they define as restrictions
on how money might be spent, and programmable payments, which they define as
payments with smart contract functionality [13,7]. In this article, we continue to use the
original term of “programmable money” to refer to both and discuss programmability in
multiple locations. What they call “programmable money” we discuss as restrictions on
spending, which might be enforced by the payment system operator in the system
software, in which case it falls under our within-system rules category. However, note
that in a system with covenants or Level 3 programmability, users (one of whom might
be an asset issuer) could program in their own restrictions on how money they issue or
hold might be further spent, using smart contracts.
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Conclusion

While some forms of rulesets governing the movement of money have existed for years,
it is important for policymakers evaluating CBDCs to think about programmability with a
more holistic definition. Policymakers should consider all four dimensions we define
when designing such systems, namely the format for the digital storage of value, the set
of programmable instructions to specify the conditions for the movement of that value,
the coherence guarantee provided by the environment in which those programs are
executed and enforced, and the permissioning of who is allowed to create, call and
verify the execution of programs. The four potential locations for programmability we lay
out highlight the differences in guarantees provided across each of the locations and
how policy and regulatory frameworks might be needed where technical guarantees
aren’t present in the system. While there are many more questions that need to be
addressed about programmability in CBDCs, answering these questions and uncovering
new challenges will require a coordinated research effort among academia, industry, and
the public sector.
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