
Auditable Private Ledgers

by

Willy R. Vasquez

B.S., Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 18, 2017

Certified by. .
Dr. Neha Narula

Director of Digital Currency Initiative, Media Lab
Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

Auditable Private Ledgers

by

Willy R. Vasquez

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes the design and implementation of Auditable Private Ledgers
(APL), a privacy solution for distributed ledgers that lets third parties audit private
ledger data. With the use of permissioned blockchains, zero-knowledge proofs, and
additively homomorphic commitments, we are able to provide a balance between
privacy and regulation. For this work, I implemented the cryptographic tools in Go,
helped develop zero-knowledge proofs to provide data authenticity and integrity, and
performed an evaluation of this system to measure its performance. Our work shows
that the system is reasonable to run between a small number of participants, and
that we can efficiently run private sums without revealing fine-grained inputs.

Thesis Supervisor: Dr. Neha Narula
Title: Director of Digital Currency Initiative, Media Lab

3

4

Acknowledgments

There are many special people that have helped me get to where I am today that I

have to give a shout out to.

My parents, Andres and Maria, who taught me the importance of responsibility

and being humble, and The Child who will one day fly higher than I have.

My advisor, Neha, whose patience and friendship has been quite invaluable in this

endeavor. It was challenging for me at times, but her patience and advising helped

me achieve my goals. Thank you for believing in me and teaching me how to be a

successful researcher.

My unofficial other advisor, Madars, whose cheerfulness and Taylor Swift refer-

ences made doing research a blast.

The folks at the DCI who provided stimulating conversations from cryptocurren-

cies to cricket over tea. It’s been an incredible year and it’s been an honor to work

with y’all.

A special shout out to Jeremy and Brian for introducing me to the DCI, and

allowing me to have this awesome opportunity.

The undergraduate Latino community at MIT: LUChA, MAES, and Spanish

House. They took this lost freshman and made me the leader I am today. I hope to

continue supporting them in an alumni role, and am looking forward to see members

succeed.

My brother Alan, whom with I’ve spent many late nights this past year knocking

out work and playing CoD.

Last but not least, my wife Ana, who has believed in me from day one and

continues to push me further than I ever thought I could go. I love you.

5

6

Contents

1 Introduction 11

1.1 Contributions . 13

2 Related Work 15

2.1 Bank Ledger Privacy . 15

2.2 Private Auditing of Financial Institutions 17

3 Background 19

3.1 Elliptic Curve Cryptography . 19

3.2 Permissioned Blockchain . 20

3.3 Non-Interactive Zero-Knowledge Proof Systems 21

3.4 Additively Homomorphic Commitment Schemes 22

3.5 Financial Auditing . 23

4 Zero-Knowledge Proofs 27

4.1 Proofs of Secret Key . 27

4.2 Disjunctive Proofs . 28

4.3 Equivalence Proofs . 30

4.4 Consistency Proofs . 31

4.5 Range Proofs . 31

5 Auditable Private Ledgers 33

5.1 Overview . 33

5.1.1 Goals . 34

7

5.1.2 Threat Model . 35

5.2 Architecture . 35

5.2.1 API . 35

5.2.2 Ledger Construction . 37

5.2.3 Ledger Functions . 41

6 Auditing Protocols 43

6.1 Private Sums . 43

6.2 Herfindahl Index . 45

7 Implementation 47

7.1 Structure . 47

7.1.1 Servers . 48

7.1.2 Clients . 48

7.2 Optimizations . 49

8 Evaluation 51

8.1 Setup and Tests . 51

8.2 Appending to Ledger . 51

8.3 Auditing . 53

8.3.1 Private Sums . 55

8.3.2 Herfindahl Index . 55

9 Conclusion 57

9.1 Known Challenges . 58

9.2 Future Work . 58

8

List of Figures

3-1 Sigma Protocols . 22

4-1 Generalized Schnorr Proof . 28

4-2 Disjunctive Proofs . 29

4-3 Equivalence Proofs . 30

4-4 Consistency Proofs . 32

5-1 APL System Overview . 34

5-2 Ledger description with locks representing private transactions, the

visible numbers on participants public transactions, and metadata list-

ing the time, ordering, and transaction type (IS: issuance, WD: with-

drawal, TX: transfer transaction) . 37

6-1 Equivalence proof for sum of assets 44

8-1 𝑝𝑇𝑋 throughput with one to thirteen simultaneous transacting banks 52

8-2 𝑝𝑇𝑋 latency with one to thirteen simultaneous transacting banks . . 53

8-3 𝑝𝑇𝑋 throughput with two to fourteen banks, varying simultaneous

banks transacting from 1 to 12 . 54

8-4 Auditing latency of private sum protocol per number of transactions

stored on the ledger . 54

8-5 Auditing latency of Herfindahl Index protocol per number of transac-

tions stored on the ledger . 55

8-6 Difference in performance between Herfindahl Index protocol and pri-

vate sum protocol . 56

9

10

Chapter 1

Introduction

Auditability provides a guarantee that a system is behaving as expected. From finan-

cial regulation to measurement of systemic risk, auditability provides accountability

in systems. Lack of auditability or inaccurate results from auditing can have devas-

tating effects. For example, the 2008 financial crisis was caused, in part, by a lack of

insight by regulators and investors into the operations of financial institutions.

In this work, we build upon applications of blockchains with privacy and auditabil-

ity as a central tenant. We develop a system called Auditable Private Ledgers where

blockchain transactions hide who is transacting and the amount transacted, while

letting auditors get an understanding of the system as a whole by computing on the

hidden transaction data.

Traditionally, auditability has been solved by the use of trusted third party audi-

tors [34]. Auditing companies such as Deloitte, PricewaterhouseCoopers, Ernst and

Young, and KPMG (known as the “Big Four”) together audit 99% of the companies in

the FTSE 100 [21], the hundred companies on the London Stock Exchange with the

highest capitalization. The U.S. Government Accountability Office uses a set of stan-

dards known as the Yellow Book to audit government entities and government-funded

organizations [6]. Financial institutions and exchanges are monitored by federal and

state government agencies such as the Office of the Comptroller of the Currency

(OCC), the Federal Deposit Insurance Corporation (FDIC), the Securities and Ex-

change Commission (SEC), and other agencies with specialized focuses in order to

11

ensure a well managed systemic risk and the prevention of deceptive or manipulative

trading practices [34].

Unfortunately, this type of auditing is a laborious and time-consuming process,

meaning that regulators and investors cannot get access to real-time information

about the status of financial institutions. This means auditing information is usually

out of date in a world where investments change at a fast pace. In addition, the

auditing institutions sometimes make mistakes. The most well-known example of

this is the collapse of Arthur Anderson, which failed to catch Enron’s $100 billion

accounting fraud. In 2008, Ernst and Young failed to catch Lehman Brother’s strange

accounting with repo 105s, which made it look like Lehman was better capitalized than

it really was. From this grew the Dodd-Frank Act (DFA), a 2010 wall-street reform

in response to the 2008 financial crisis, that required a transformation of banking

regulation and more transparency across financial institutions. The DFA established

the Office of Financial Research in order to promote financial stability and collect

data from institutions to measure systemic risk, and it produces a quarterly report

on U.S. systemic risk [1].

A challenge with financial data is the requirement of privacy of trading strategy.

Revealing asset trading strategy could let a competitor capitalize and influence a

market to cause significant financial harm to a bank. For example, in 2012, news

sources made public JP Morgan’s large position in synthetic credit default swaps

(known as the London Whale), and competitors were able to take on competing swap

positions so that when the swaps suffered losses, JP Morgan’s losses were much higher

than if their position was kept private [25]. Because banks submit periodic reports

that need time for analysis, it is difficult to get a global real-time view of the financial

system. By aggregating the data of actors in the system, auditors can better predict

failures and growths of the system, and could help prevent fraud as it occurs.

Recently, financial institutions have formed consortia [40] to investigate the use

of a different architecture for securities settlement, inspired by blockchain technol-

ogy. The blockchain is the data structure behind Bitcoin, an open, distributed cryp-

tocurrency. Bitcoin’s success has motivated institutions to consider upgrading their

12

technical infrastructure by using permissioned blockchains, often maintained by par-

ticipants with a consensus protocol. There are many strong players in this area that

are making an impact such as IBM’s Hyperledger [2], R3’s Corda [30], Tendermint

[42], Kadena [3], and JP Morgan’s Quorum [5]. These players provide a spectrum

of privacy solutions, from privacy via segmentation to privacy through cryptography,

but they all require a trusted third party to audit ledger content.

With financial institutions participating in these ledgers, auditing becomes a real-

time process for quick responses to issues that may arise.

1.1 Contributions

We developed a practical system we call Auditable Private Ledgers (APL) that

supports auditing queries for financial institutions while keeping individual trans-

actions private between participants. Using homomorphic commitment schemes,

zero-knowledge proofs, and permissioned blockchains we can run any affine or lin-

ear function on committed data while achieving efficient transaction throughput.

The contributions of thesis are the implementation of the cryptographic compo-

nents of APL in Go, the evaluation of APL on a single host, and the design and

development of the disjunctive proof applied to proof of assets.

This thesis builds up to our design by first providing related work and background.

It then describes the design, the implementation, and the evaluation, and concludes

with requirements for use cases outside of financial auditing.

13

14

Chapter 2

Related Work

Auditable Private Ledgers (APL) focuses on providing auditability, or the measure-

ment of the state of a system, to private data stored on distributed ledgers without

relying on a trusted third party.

Here we present related work in the areas of bank ledger privacy and private au-

diting of financial institutions. Privacy in this context refers to hiding the amount

that is being transacted between entities, as well as hiding who the senders and re-

ceivers of each transaction are in the entire system, effectively concealing the complete

transaction graph.

2.1 Bank Ledger Privacy

Financial institutions such as banks and exchanges are exploring blockchains for im-

proving transaction speed and verification.

One such exploration is the R3 Consortium [40] which is composed of more than

70 banks that experiment with blockchain technology. R3’s system, Corda [30], pro-

vides confidentiality, but relies on trusted third parties called notaries to perform

transaction verification, achieve consensus, and provide privacy to transactions. Our

system similarly is set in a permissioned system and lets banks add items to a dis-

tributed ledger, but differs by not inherently relying on a trusted third party to verify

transactions, achieve consensus, or provide privacy.

15

The Initiative for Cryptocurrencies and Contracts (IC3) [8] developed Solidus [19],

a system that uses Oblivious RAM to hide the transaction graph and transaction

amount between bank customers. While their construction also explores the use case

of private transactions, they only provide auditability by revealing all of keys used in

the system to an auditor, and do not hide the transaction graph between banks.

Privacy on blockchains deals with hiding either one, some, or all of transaction

amounts, the transaction graph, or transaction asset types.

Zcash [7] is a cryptocurrency that hides transaction amounts and the transaction

graph using zero-knowledge proofs and other less conservative assumptions. Zcash

relies on a trusted setup for its zero-knowledge succinct arguments of knowledge (zk-

SNARKs) which, if this trusted setup is tampered with, may result in the invalidation

of the currency. Specifically, since Zcash assets are blinded, there is no exact way to

measure the total number of assets in Zcash. Thus with a tampered trusted setup,

an attacker may be able to issue new money without detection of the network[15].

Zcash does not inherently provide auditability, but its zk-SNARK construction can

be extended to enforce policies that give auditability properties [29].

Chain’s Confidential Assets [20] is a system for managing multiple assets on a sin-

gle ledger, and assuring privacy of transaction amount and transaction types. Confi-

dential Assets has the capability to privately issue out new asset types, but does not

address the issue of transaction graph privacy on its own; it can be combined with

other techniques to provide this property. While we both use tools such as range

proofs and Pedersen commitments, Chain does not explore auditability of committed

data, and focuses on providing privacy. Confidential Assets has the capability to

handle multiple assets, while we do not at the time of writing.

Similar to Chain’s construction, Blockstream’s Confidential Transactions/Assets

[39] provides transaction amount and type privacy to multiple assets on a single

ledger, including in issuances, but does not provide any features for auditing of data,

nor attempts to hide transaction participants.

Digital Asset Holdings (DAH) has developed a system called the Global Synchro-

nization Log (GSL) which is a distributed ledger that achieves privacy by creating

16

segregated ledgers that are synchronized by authorized entities when necessary [14].

Instead of relying on sophisticated cryptographic tools for privacy, they run the seg-

regated ledgers with parties on a need-to-know basis, and only share fingerprints of

the data on the global ledger. The challenge for an auditor in this case is determining

all the required ledgers they need to audit, instead of having the required data in a

single location.

2.2 Private Auditing of Financial Institutions

Two projects that have the similar goal of privately auditing financial institutions are

Provisions [22], and Abbe et al.’s work [12] on multi-party computation (MPC) for

financial risk.

Provisions is a system for proving cryptocurrency exchange solvency [22]. They

provide auditability for exchanges to prove that they are solvent without revealing the

amount that they have. Exchanges provide information to third parties to verify their

committed data is correct, but auditors cannot perform computations on exchange

data to perform further analysis. Provisions also suffers from the fact that exchanges

can potentially share keys and double count the same assets for different exchanges.

In [12], Abbe et al. provide auditability for all banks by using MPC to run func-

tions on banks’ private data. Since transaction verification and transaction logging

occur separately, banks may not provide all their balance sheet information when

running a computation with other banks, or may misrepresent the transactions. By

combining both transaction verification and logging into one system, we are able to

prevent banks from excluding information and maintain a real-time view of transac-

tions.

17

18

Chapter 3

Background

APL relies on three technical tools: permissioned blockchains, non-interactive zero-

knowledge proof systems, and additively homomorphic commitment schemes. From

these components, we look into how to run financial auditing functions to measure

systemic risk.

3.1 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is the use of elliptic curves to provide crypto-

graphic guarantees. Predominantly they are used in asymmetric cryptography set-

tings where security is guaranteed by the difficulty of the elliptic curve discrete loga-

rithm problem (ECDLP).

Definition 1 (ECDLP) Given an elliptic curve group E(Z𝑝) with base-point 𝐺, the

elliptic curve discrete logarithm problem (ECDLP) is the problem of recovering

the scalar 𝑥 given the group elements 𝑥𝐺 and 𝐺.

From the ECDLP, we can describe the elliptic curve decisional Diffie-Hellman

(ECDDH) problem and the elliptic curve computational Diffie-Helmman (ECCDH)

problem.

Definition 2 (ECDDH) Given points 𝐴 = 𝑎𝐺, 𝐵 = 𝑏𝐺, and 𝐶 = 𝑐𝐺 from the

elliptic curve group E(Z𝑝) with base-point 𝐺, the elliptic curve decisional Diffie-

19

Hellman problem (ECDDH) asks whether an adversary is able to correctly deter-

mine if 𝐶 is chosen at random or is a combination of 𝐴 and 𝐵.

Definition 3 (ECCDH) Given points 𝐴 = 𝑎𝐺 and 𝐵 = 𝑏𝐺 from the elliptic curve

group E(Z𝑝) with base-point 𝐺, the elliptic curve computational Diffie-Hellman

problem (ECCDH) asks whether an adversary is able to compute 𝐶 = 𝑎𝑏𝐺 given

𝐴 and 𝐵.

Given the ECDDH and ECCDH, we can now construct cryptographic systems

that rely on the difficulty of these problems. In particular, we rely on the security of

the ECDLP to construct our zero-knowledge proofs and Pedersen commitments.

3.2 Permissioned Blockchain

A blockchain is a decentralized, tamper-resistant, append-only ledger that relies on

a consensus protocol to control what is added to it. Blockchains organize data in the

ledger as a series of blocks that contain transaction information, and have a reference

to a preceding block, chaining them together. This reference is what gives blockchains

the append-only properties: a change in a block in the middle of the chain will require

a significant amount of computation or coordination to update the following blocks,

which would violate the consensus protocol.

Blockchains can have two different access control structures: permissionless or

permissioned. In a permissionless blockchain anyone can participate in the consensus

protocol of the ledger and propose data to add to it, while in a permissioned blockchain

only a set of known entities can propose data to be added.

Depending on the access structure, there are a variety of consensus protocols that

can be used on the blockchain. In a permissionless setting, this may require proof

systems, where participants show they have exerted some computational effort [35],

allocated a certain amount of space on a hard drive [36], have a vested interest in the

success of the blockchain [23], or satisfied some conditions based on the randomness of

the system [33]. In a permissioned setting, since the set of entities is already known,

20

participants can rely either on proof based systems already mentioned, or byzantine-

fault tolerant solutions ([18], [31], [42]) that require a stable set of participants in a

blockchain.

3.3 Non-Interactive Zero-Knowledge Proof Systems

A zero-knowledge proof system is a method for a party to prove that they have

knowledge of some secret information to another party without revealing what that

information is. All our proofs use elliptic curve groups with base-points 𝐺 and 𝐻

and rely on the difficulty of the ECDLP. We use Σ-protocols [24] for constructing

Schnorr proofs of knowledge of discrete logarithms [41], equivalence proofs between

two different functions, disjunctive proofs of two boolean statements, range proofs on

committed values, and consistency proofs using the Maurer technique for homomor-

phisms [32]. We achieve non-interactivity in protocols by relying on the Fiat-Shamir

heuristic [27] which replaces the verifier’s chosen randomness with a random oracle.

Figure 3-1 provides the general structure of all zero-knowledge proof systems we

use in APL, and is provided here for intuition for later sections. It shows the generic

structure of Σ-protocols with the Fiat-Shamir heuristic, which consists of knowing a

secret 𝑥 from a group 𝐺 with operator ⋆, a cryptographic hash function ℋ, and a

group homomorphism 𝑓 : 𝐺 → 𝐻 that preserves ⋆ in 𝐺 by operation ⊗. Given a

secret 𝑥, the prover first chooses a random value 𝑘 and applies 𝑓 to 𝑘 to get 𝑡. Next

the prover hashes the public parameters 𝑦 and 𝑔 alongside 𝑡 in order to produce a

random value 𝑐, which will be used to produce 𝑟, an offset of the initial secret 𝑥.

Finally, the verifier, given 𝑡, 𝑐, 𝑟, 𝑦 can verify 𝑐 is indeed the hash output of the public

parameters and 𝑡, and that 𝑓 applied to 𝑟 is equivalent to homomorphic operation in

𝐻 applied to 𝑡 and 𝑦𝑐.

21

Σ Protocol

Prover Verifier

knows 𝑥 knows 𝑦 = 𝑓(𝑥)

𝑘
$← 𝐺

𝑡 = 𝑓(𝑘)

𝑐 = ℋ(𝑡, 𝑦, 𝑔)
𝑟 = 𝑘 ⋆ 𝑥𝑐

𝑡, 𝑐, 𝑟

check 𝑐
?
= ℋ(𝑡, 𝑦, 𝑔)

check 𝑓(𝑟) = 𝑓(𝑘 ⋆ 𝑥𝑐)

= 𝑓(𝑘)⊗ 𝑓(𝑥𝑐)

= 𝑓(𝑘)⊗ 𝑓(𝑥)𝑐

?
= 𝑡⊗ 𝑦𝑐

Figure 3-1: Sigma Protocols

3.4 Additively Homomorphic Commitment Schemes

A cryptographic commitment scheme lets parties commit to a particular value and

later open the commitment to a verifier with an assurance to the verifier that the com-

mitted value and the opened value are the same. The role of a commitment scheme

is to hide the value that is committed to, but also provide a binding to the originally

committed value. Commitment schemes can either perfectly bind to a value, thus

preventing an unbounded-in-resources adversary from cheating, or perfectly hide the

value committed to, preventing an unbounded-in-resources adversary from discover-

ing it, but not both. Given one perfect property, the other property must depend on

security from a computationally bounded adversary [10].

The Pedersen commitment scheme [37] provides computational binding based on

the ECDLP and perfect hiding. In APL, this gives auditors the guarantee that

banks cannot lie unless they can solve the ECDLP, while giving banks the guarantee

that their transacted data can never be discovered by an unbounded-in-resources

adversary.

22

Definition 4 (Pedersen Commitment Scheme) Given 𝐺,𝐻 generators, where

the discrete log between 𝐺 and 𝐻 is unknown, the Pedersen commitment scheme

consists of two algorithms that provide perfect hiding and computational binding:

∙ Commit(𝑣)→ (𝒞, 𝑟) : sample 𝑟
$← Z𝑝 and return commitment 𝒞 = 𝑣𝐺+ 𝑟𝐻 and

randomness 𝑟.

∙ Open(𝒞, 𝑣, 𝑟) → 0, 1 : given commitment 𝒞, value 𝑣, and 𝑟, return 1 iff 𝐶
?
=

𝑣𝐺 + 𝑟𝐻 else return 0.

The Pedersen commitment scheme is additively homomorphic and provides the

ability to perform affine or linear functions over committed data. The following two

definitions detail how affine and linear functions work in the Pedersen commitment

scheme.

Definition 5 (Affine Functions with Pedersen Commitment Scheme) Given

a commitment of 𝑣 with randomness 𝑟, 𝒞 = 𝑣𝐺 + 𝑟𝐻, and scalars 𝛿, 𝑐 ∈ Z𝑝, we mul-

tiply the commitment with 𝑐 and add by 𝛿𝐺 to get a commitment of 𝑐𝑥 + 𝛿:

𝑐𝒞 + 𝛿𝐺 = 𝑐(𝑣𝐺 + 𝑟𝐻) + 𝛿𝐺 = 𝑐𝑣𝐺 + 𝑐𝑟𝐻 + 𝛿𝐺 = (𝑐𝑥 + 𝛿)𝐺 + (𝑐𝑟)𝐻.

Definition 6 (Linear Functions with Pedersen Commitment Scheme) Given

a commitment of two values 𝑣 and 𝑤, we add the two commitments to get a commit-

ment for 𝑥 + 𝑦:

𝑣𝐺 + 𝑟𝐻 + 𝑤𝐺 + 𝑟′𝐻 = (𝑣 + 𝑤)𝐺 + (𝑟 + 𝑟′)𝐻

3.5 Financial Auditing

Auditing of financial institutions is performed by authorized private and government

entities to ensure that systemic risk in financial systems is at a manageable level, reg-

ulations are correctly enforced, and operations are managed effectively [16]. Financial

23

systemic risk auditing is performed by federal and state agencies, depending on the

size of the audited institution and the type of asset being audited. Financial auditing

can also be used to track fraudulent transactions and funding of criminal behavior

[28]. In this thesis, we are interested in financial auditing for measuring systemic risk.

There are two main forms of systemic risk that are measured: contagion between

counterparty risk in financial institutions, and contagion in prices of assets held by

different institutions [17]. The first deals with the agreements that occur between

financial institutions and the size of those agreements, usually referred to as counter-

party risk. One example would be estimating the effect of a set of banks failing, and

how the counterparty risk these banks held would affect the rest of the network. The

second deals with common balance sheet holdings, where the forced sale of illiquid

assets by one institution drives prices down and causes other institutions holding the

same type of assets to adjust for this price change in their holdings.

There are many ways to model contagion risks, using techniques from graph the-

ory [13], complex physical systems, and statistics [17]. In this work we start with

statistical analysis measuring the Herfindahl Index, similar to [11]. The Herfindahl

Index provides a measure of competition in a certain industry among a set of firms

by calculating the sum-of-squares of the market share of measured firms. Given a

total number of shares 𝑇 amongst 𝑁 firms each with amount 𝑎𝑖 of shares, then the

Herfindahl Index 𝐻 is calculated as:

𝐻 =
𝑁∑︁
𝑖=1

(︁𝑎𝑖
𝑇

)︁2

.

A higher Herfindahl Index means an industry is highly concentrated by a few players,

while a lower Herfindahl Index means the industry is competitive.

In our context, we calculate the Herfindahl Index to measure the concentration of

a particular asset amongst a group of banks, to correlate with the common balance

sheet holdings. A higher Herfindahl Index means a lower possibility of contagion

effect from a bank selling the asset in question, thus driving down its price. A lower

Herfindahl Index means assets are more uniformly spread and the contagion effect is

24

higher since more banks have the measured asset in their holdings.

25

26

Chapter 4

Zero-Knowledge Proofs

Given the building blocks from Section 3, we describe how we use zero-knowledge

proofs to provide guarantees about our system. We use specialized proofs that guar-

antee that computations are done correctly and that banks cannot undetectably lie

about transacted values. Our proofs rely on a cryptographic hash function ℋ, and

public elliptic curve parameters that all entries can verify: an elliptic curve group

E(Z𝑝), group generators 𝐺 and 𝐻, and scalar group modulus 𝑝.

We use zero-knowledge proofs with the Fiat-Shamir heuristic [27] to take advan-

tage of the non-interactive proving properties. Non-interactivity makes it so that a

single bank can produce a transaction without having to coordinate with the receiving

bank, and banks and auditors can verify transactions as they get added to the ledger

without having to communicate with each other.

4.1 Proofs of Secret Key

We use the Generalized Schnorr Proof (GSP) of knowledge for a discrete log-

arithm in order to ensure that transactions are valid and that transactions are not

forged.

Banks initiating transactions create GSPs to prove that they have sufficient assets

in one half of disjunctive proofs, or that they publicly signal an issuance or withdrawal.

Figure 4-1 shows how this works with elliptic curve points. A prover wants to

27

Discrete Log Σ Protocol

Prover Verifier

knows 𝑥 knows 𝑌 = 𝑥𝐺

𝑘
$← Z𝑝

𝑇 = 𝑘𝐺

𝑐 = ℋ(𝑇, 𝑌,𝐺)

𝑟 = 𝑘 + 𝑐 · 𝑥

𝑟, 𝑇, 𝑐

check 𝑐
?
= ℋ(𝑇, 𝑌,𝐺)

check 𝑟𝐺 = (𝑘 + 𝑐 · 𝑥)𝐺
= 𝑘𝐺+ 𝑐 · 𝑥𝐺
?
= 𝑇 + 𝑐𝑌

Figure 4-1: Generalized Schnorr Proof

convince a verifier that knows 𝑌 = 𝑥𝐺 they know 𝑥 without revealing 𝑥. The prover

first chooses a random value 𝑘 and produces 𝑇 = 𝑘𝐺. Given 𝑇, 𝑌, and 𝐺, the prover

uses a cryptographic hash function ℋ to generate 𝑐. The prover computes 𝑟 = 𝑘+𝑐 ·𝑥

and sends to the verifier 𝑟, 𝑇, and 𝑐. The verifier makes sure that 𝑐 was generated

correctly by checking that it is equal to ℋ(𝑇, 𝑌,𝐺) and then multiplies 𝑟 by 𝐺 and

compares that to 𝑇 + 𝑐𝑌 .

4.2 Disjunctive Proofs

With disjunctive proofs provers hide what side of a boolean OR statement of

knowledge they are proving. This is a crucial element to proving that a bank has a

sufficient amount of assets without revealing which bank is transacting.

Since disjunctive proofs only need to be true on one side of the disjunction, the

prover simulates the proof for the other side, meaning that constants are chosen so

that the statement is vacuously true even if the secret is not known. The simulation

only succeeds if the side being proved is in fact true; if a party cannot prove either side,

28

Disjunctive Σ Protocol

Prover Verifier

Disjunction (follows one column)

knows 𝑎 knows 𝑏

𝑘1
$← Z𝑝 𝑘2

$← Z𝑝

𝑠2
$← Z𝑝 𝑠1

$← Z𝑝

𝑐2
$← Z𝑝 𝑐1

$← Z𝑝

𝑇1 = 𝑘1𝐺 𝑇2 = 𝑘2𝐺

𝑇2 = 𝑠2𝐺− 𝑐2𝐵 𝑇1 = 𝑠1𝐺− 𝑐1𝐴

𝑐 = ℋ(𝑇1, 𝑇2, 𝐺,𝐴,𝐵) 𝑐 = ℋ(𝑇1, 𝑇2, 𝐺,𝐴,𝐵)

𝑐1 = 𝑐− 𝑐2 mod 𝑝 𝑐2 = 𝑐− 𝑐1 mod 𝑝

𝑠1 = 𝑘1 + 𝑐1 · 𝑎 𝑠2 = 𝑘2 + 𝑐2 · 𝑏

knows 𝐴 = 𝑎𝐺 and 𝐵 = 𝑏𝐺

𝑇1, 𝑇2, 𝑐, 𝑐1, 𝑐2, 𝑠1, 𝑠2

check 𝑐
?
= ℋ(𝑇1, 𝑇2, 𝐺,𝐴,𝐵)

check 𝑐
?
= 𝑐1 + 𝑐2 mod 𝑝

check 𝑠1𝐺
?
= 𝑇1 + 𝑐1𝐴

check 𝑠2𝐺
?
= 𝑇2 + 𝑐2𝐵

Figure 4-2: Disjunctive Proofs

both cannot be simulated due to the Fiat-Shamir heuristic preventing predetermined

constants from being used.

Figure 4-2 shows how disjunctions are proved. W.L.O.G., a party proving knowl-

edge of 𝑎 simulates the proof for 𝐵 = 𝑏𝐺 as so: they choose random numbers 𝑘1, 𝑠2,

and 𝑐2. The prover computes 𝑇1 = 𝑘1𝐺 and 𝑇2 = 𝑠2𝐺 − 𝑐2𝐵 of which the latter

will be used to simulate knowledge of 𝐵 = 𝑏𝐺. The prover calculates 𝑐 using ℋ

on public information 𝑇1, 𝑇2, 𝐺,𝐴,𝐵 and subtracts 𝑐2 from 𝑐 to calculate 𝑐1. The

prover then calculates 𝑠1 = 𝑘1 + 𝑐1𝑎 which is used to prove knowledge of 𝑎, and sends

𝑇{1,2}, 𝑐{1,2}, and 𝑠{1,2} to the verifier. The verifier makes sure that 𝑐 is the output of

ℋ on the public information, that 𝑐1 + 𝑐2 = 𝑐, and that 𝑠{1,2} applied to 𝐺 equals

𝑇{1,2} + 𝑐{1,2}{𝐴,𝐵}.

29

Equivalence Σ Protocol

Prover Verifier

knows 𝑥 knows 𝑌 = 𝑥𝐺,𝑍 = 𝑥𝐻

𝑘
$← Z𝑝

𝑇1 = 𝑘𝐺

𝑇2 = 𝑘𝐻

𝑐 = ℋ(𝐺,𝐻,𝑍, 𝑌, 𝑇1, 𝑇2)

𝑠 = 𝑘 + 𝑐 · 𝑥

𝑇1, 𝑇2, 𝑠, 𝑐

check 𝑐
?
= ℋ(𝐺,𝐻,𝑍, 𝑌, 𝑇1, 𝑇2)

check 𝑠𝐺
?
= 𝑇1 + 𝑐𝑌

check 𝑠𝐻
?
= 𝑇2 + 𝑐𝑍

Figure 4-3: Equivalence Proofs

4.3 Equivalence Proofs

Equivalence proofs allow a party to prove that the secret values used in two different

equations are the same. Given 𝑌 = 𝑥𝐺 and 𝑍 = 𝑥𝐻 the proof certifies that the 𝑥’s

are the same. This is used by banks to prove to auditors that committed values are

equal to those on the ledger.

Figure 4-3 shows how to prove equivalence of exponent of two values with different

base points. A prover that knows 𝑥 wants to prove that 𝑌 = 𝑥𝐺 and 𝑍 = 𝑥𝐻 have

the same discrete log 𝑥. The prover chooses a random 𝑘 and computes 𝑇1 = 𝑘𝐺

and 𝑇2 = 𝑘𝐻 and uses a cryptographic hash function ℋ on the public parameters

𝐺,𝐻,𝑍, 𝑌, 𝑇1, 𝑇2 to calculate 𝑐. The prover computes 𝑠 = 𝑘 + 𝑐𝑥 and sends it to the

verifier, which checks if 𝑐 is the output of ℋ on the public parameters, and that the

same 𝑠 checks out in 𝑠𝐺 = 𝑇1 + 𝑐𝑌 and 𝑠𝐻 = 𝑇2 + 𝑐𝑍.

30

4.4 Consistency Proofs

Consistency proofs rely on the Maurer proofs for homomorphisms [32] to show

consistency in the randomness value used between Pedersen commitments and other

elliptic curve group points multiplied by the same value. They are similar to equiv-

alence proofs with the second equation set to a Pedersen commitment. The proof

convinces a verifier that the same randomness value is used in the commitment and

in the multiplication. The necessity for this consistency proof becomes apparent in

Section 5.2.2.

Figure 4-4 demonstrates how to prove consistency between commitments and mul-

tiplied group values. The prover that knows the value 𝑣 and randomness 𝑟 used in

a Pedersen commitment 𝐶𝑀 as well as the point 𝑃𝐾 = 𝑥𝐻 wants to prove that

𝑌 = 𝑟𝑃𝐾 is the same 𝑟 used in the 𝐶𝑀 . The prover first chooses two random

values 𝑘1 and 𝑘2 and computes 𝐴1 = 𝑘1𝐺 + 𝑘2𝐻 and 𝐴2 = 𝑘2𝑃𝐾. Then using a

cryptographic hash function ℋ, the prover computes 𝑐 from the public parameters

ℋ(𝐺,𝐻,𝐴1, 𝐴2, 𝑃𝐾,𝐶𝑀, 𝑌) and produces 𝑠1 = 𝑘1 + 𝑐 · 𝑣 and 𝑠2 = 𝑘2 + 𝑐 · 𝑟. The

prover sends 𝐴{1,2}, 𝑐, 𝑠{1,2} to the verifier, which makes sure the hash function out-

put of the public parameters matches 𝑐, calculates 𝑠1𝐺 + 𝑠2𝐻 and compares it to

𝐴1 + 𝑐𝐶𝑀 , and calculates 𝑠2𝑃𝐾 and compares it to 𝐴2 + 𝑐𝑌 . If all these checks are

passed, then the verifier is assured 𝐶𝑀 and 𝑌 use the same 𝑟 value.

4.5 Range Proofs

We use Blockstream’s Confidential Assets [39] zero-knowledge range proofs in APL

to prove that a bank’s value is within the range [0, 264). This gives verifiers the

guarantee that a transacting bank is sending a positive number of assets, has sufficient

assets to transact, and are not trying to decrease the assets of another bank. The

details of the construction can be found in [39].

31

Consistency Σ Protocol

Prover Verifier

knows 𝑣, 𝑟, 𝑃𝐾 = 𝑥𝐻 knows 𝐶𝑀 = 𝑣𝐺+ 𝑟𝐻

𝑘1
$← Z𝑝 knows 𝑌 = 𝑟𝑃𝐾

𝑘2
$← Z𝑝

𝐴1 = 𝑘1𝐺+ 𝑘2𝐻

𝐴2 = 𝑘2𝑃𝐾

𝑐 = ℋ(𝐺,𝐻,𝐴1, 𝐴2, 𝑃𝐾,𝐶𝑀, 𝑌)

𝑠1 = 𝑘1 + 𝑐 · 𝑣
𝑠2 = 𝑘2 + 𝑐 · 𝑟

𝐴1, 𝐴2, 𝑐, 𝑠1, 𝑠2

check 𝑐
?
= ℋ(𝐺,𝐻,𝐴1, 𝐴2, 𝑃𝐾,𝐶𝑀, 𝑌)

check 𝑠1𝐺+ 𝑠2𝐻
?
= 𝐴1 + 𝑐𝐶𝑀

check 𝑠2𝑃𝐾
?
= 𝐴2 + 𝑐𝑌

Figure 4-4: Consistency Proofs

32

Chapter 5

Auditable Private Ledgers

5.1 Overview

APL provides transaction privacy for ledger participants while letting authorized par-

ties compute on the private data. APL acts as a layer atop a permissioned blockchain,

and remains agnostic to the consensus protocol used.

APL has two main types of actors: auditors that run computations over the

transactions on the ledger and banks that add transactions to the ledger and/or

also audit the ledger. Banks have their own public/private key pair, and use ledger-

wide cryptographic parameters to hide transaction details and interact with auditors.

Figure 5-1 demonstrates how actors interact in our system.

The ledger in APL is the authoritative source of all transactions that have occurred

in the system, and specifies ownership of the digital assets. This guarantees to the

auditor that their analysis is on the complete holdings of each bank, and that assets

are not inaccessible.

APL currently only supports a single asset stored on the ledger, but it is future

work to extend APL to handle multiple assets on a single ledger.

33

Figure 5-1: APL System Overview

5.1.1 Goals

In designing APL, we want to provide certain correctness guarantees about our sys-

tem. First, we want to make sure that each transaction is verifiable. Verifiable

transactions consist of assets neither being created nor destroyed unless done so pub-

licly, that the spender has sufficient assets to transfer, and the spender has the correct

privileges to transfer the claimed assets. Second, when auditing, we want transactions

to have sufficient information in them so that banks can respond to auditor queries

even for transactions they were not involved in. We want to be able to represent a

sufficiently expressive query language that would provide auditors metrics of interest.

Given the correctness properties, maintaining privacy of transaction amounts and

the transaction graph is critical. These guarantees, coupled with the inability for

participants to undetectably lie about their assets when transacting, were important

in influencing design choices and developing a robust system. We adopt the cryp-

tocurrency mantra of focusing on trust first, then efficiency.

We want to maintain a high transaction throughput that scales with the number

of banks to provide efficient clearing of securities, so to this end we use lightweight

specialized protocols that give us our security guarantees.

34

5.1.2 Threat Model

We assume a set of untrusted banks appending transaction information to a ledger

that is the authoritative source of the holdings of each bank, and an auditor that has

read-only access to this ledger. All communication happens through authenticated

data channels via public/private key pairs that each bank and the auditor have. Banks

may keep local copies of the data stored on the ledger, but only the information stored

on the ledger is considered valid. Only transactions deemed valid by the underlying

consensus mechanism make it onto the ledger. Banks may update internal accounts

as normal, but new or withdrawn assets must be recorded on the ledger.

From these assumptions, we consider the possibility that an individual bank at-

tempts or a set of colluding banks attempt to lie about their holdings to auditors,

or to non-colluding banks. Banks may also try to steal assets, transfer the assets

of other banks, manipulate their ledger assets, or falsify proofs. Malicious auditors

may try to learn more about the holdings of each bank such as fine-grained trading

strategy of the bank, and may also collude with banks to negatively impact a target

bank.

We assume that the ledger follows the implemented consensus protocol correctly,

and that denial of service to the protocol/network layer does not occur.

5.2 Architecture

APL is a distributed system run by banks and auditors that maintains a tamper-

resistant append-only ledger. There is no trusted third party that verifies transac-

tions, but all banks and auditors monitor the correctness of transactions appended

to the ledger.

5.2.1 API

We define a public transaction 𝑇𝑋 and private transaction 𝑝𝑇𝑋 that contain the

data that will be stored in the ledger.

35

Definition 7 (Public Transaction (TX)) A public transaction (TX) in APL

is an 𝑛-entry row vector that contains a change in asset balance for all 𝑛 participants

in APL. The entries are public and visible to everyone on the ledger.

Definition 8 (Private Transaction (pTX)) A private transaction (pTX) in

APL is an 𝑛-entry row vector that contains a change in asset balance for all 𝑛 par-

ticipants in APL with the values and transacting parties hidden.

The ledger has three types of entries: issuances, withdrawals, or transfers. Is-

suance and withdrawal transactions are public transactions that require the signature

of the bank that is performing the public change. A transfer transaction is a private

transaction and is valid if the sum of all asset change commitments are equal to 0, and

the entries are verified correct via zero-knowledge proofs. In Section 5.2.2 we further

explain the zero-knowledge proofs contained in private transactions, and what makes

them valid.

The following describes the API that APL follows:

Definition 9 (APL Model) Auditable Private Ledgers (APL) is a system atop a

distributed ledger that provides privacy to ledger participants while letting authenti-

cated third parties perform computations on private data. APL has the following

methods:

∙ Setup(𝑛, 𝜅) → ([(𝑝𝑘1, 𝑠𝑘1), . . . (𝑝𝑘𝑛, 𝑠𝑘𝑛)], 𝐺,𝐻): Given a security parameter 𝜅,

produces a public/private key pair for each bank, and group generators 𝐺 and

𝐻.

∙ Transfer(𝑖, 𝑗, 𝑣) → 𝑝𝑇𝑋: Produces a private transaction 𝑝𝑇𝑋 from Bank 𝑖 to

Bank 𝑗, with value 𝑣, and generates the necessary zero-knowledge proofs for the

transaction to be valid.

∙ Issue(𝑖, 𝑣) → 𝑇𝑋: Produces a public transaction 𝑇𝑋 by Bank 𝑖 that publicly

issues value 𝑣, and generates a valid signature for this issuance.

∙ Withdraw(𝑖, 𝑣)→ 𝑇𝑋: Produces a public transaction 𝑇𝑋 by Bank 𝑖 that publicly

withdraws value 𝑣, and generates a valid signature for this withdrawal.

36

Figure 5-2: Ledger description with locks representing private transactions, the
visible numbers on participants public transactions, and metadata listing the time,
ordering, and transaction type (IS: issuance, WD: withdrawal, TX: transfer transac-
tion)

∙ Audit(𝑓(·), {1, ..., 𝑛}) → {0, 1}*: Given a function 𝑓(·) and indices of ledger

rows {1, ..., 𝑛}, evaluate 𝑓(·) over all entries at the given indices and return the

function output.

5.2.2 Ledger Construction

The ledger contents are stored in a table format, where columns are banks and a row

is a transaction. Each transaction contains entries for each bank, as well as metadata

such as index, timestamp, and transaction type. Figure 5-2 shows what the ledger

looks like with locks representing data that is private.

With the table format we have each bank included in each transaction, hiding who

is transacting with whom. With each transaction entry having specially constructed

data indistinguishable from random, we are able to obfuscate the sender and receiver

of a transaction, preventing an adversary that watches the ledger from producing a

transaction graph. Because of the way we designed our table, our design requires

37

banks to be able to use information in transactions in which they were not involved

when responding to auditors.

For a transaction of value 𝑣 from bank 𝐴 to bank 𝐵, the value of −𝑣 is committed

to in 𝐴’s entry, 𝑣 in 𝐵’s entry, and 0s in all other entries. We build here the different

components of the transaction entry and how they all relate to achieve our goals.

Commitments Each column entry 𝑖 includes a Pedersen commitment 𝐶𝑀𝑖 to

the transacted value 𝑣𝑖. The purpose of this Pedersen commitment is to hide 𝑣𝑖 while

providing a binding to the auditor to 𝑣𝑖. The sending bank chooses the Pedersen

commitment randomness so that the sum of the commitments in the transaction add

up to 0, preventing the creation or destruction of assets in a 𝑝𝑇𝑋. Given 𝑛 − 1

randomly chosen 𝑟 values, the sending bank chooses 𝑟𝑛 so that
∑︀𝑛−1 𝑟𝑖 + 𝑟𝑛 ≡ 0

mod 𝑝 where 𝑝 is the order of the elliptic curve group E(Z𝑝). When verifying, banks

and auditors check the sum of commitments:

𝑛∑︁
𝑖=1

𝐶𝑀𝑖 =
𝑛∑︁

𝑖=1

𝑣𝑖𝐺 + 𝑟𝑖𝐻 =
𝑛∑︁

𝑖=1

𝑣𝑖𝐺 = 0

Since the 𝑟𝑖 are chosen to add up to 0, the 𝑣𝑖 must also add up to 0 to guarantee a

balance of assets.

Proof of Assets When transacting, verifiers need to be assured that banks have

sufficient funds to transact while still hiding which banks are transacting. We use a

disjunctive zero-knowledge proof on a second commitment we call 𝐶𝑀AUX,𝑖 with a new

randomness 𝑟′𝑖, which is either a recommitment of the same value 𝑣𝑖 or a commitment

to the sum of values in column 𝑖,
∑︀𝑛

𝑗=0𝐶𝑀𝑖,𝑗. We also add a range proof proving

that 𝐶𝑀AUX,𝑖 is a nonnegative value upwardly bounded by 264. The disjunctive proof

claims that 𝐶𝑀AUX,𝑖 is one or the other, without revealing which side it proves thus

hiding which bank is transacting.

Supplemental Recovery and Proving Information In order to allow the

receiving bank to recover 𝑣𝑖 and have the disjunctive proof incorporate the bank’s

assets, we need to provide supplemental information in the transaction. We create

what we refer to as a 𝐵Token,𝑖 (pronounced "b-token"), which is the multiplication of

38

the randomness used in 𝐶𝑀𝑖 with the public key 𝑝𝑘𝑖 of bank 𝑖. Instead of involving

each bank in the creation of a transaction, which could allow a bank to block the

creation of a transaction, using 𝐵Token,𝑖, a bank not involved in the transaction can

recover 𝑣𝑖 by multiplying 𝐶𝑀𝑖 by the inverse of their secret key 𝑠𝑘−1
𝑖 to recover

𝑟𝑖𝐻, subtracting 𝑟𝑖𝐻 from 𝐶𝑀𝑖 to get 𝑣𝑖𝐺, and iterating through potential values 𝜌

until confirming 𝜌𝐺 equals 𝑣𝑖𝐺. We also store the randomness used in 𝐶𝑀AUX,𝑖 as

𝐵Token,AUX,𝑖 to recover the value in 𝐶𝑀AUX,𝑖 and incorporate it into the disjunctive

proof.

Given 𝐵Token,𝑖 = 𝑟𝑖 · 𝑝𝑘𝑖, the bank generating the transaction proves they either

know the secret key of column 𝑖, and hence the assets of the column, or that they

know the difference between 𝑟𝑖 in 𝐶𝑀𝑖 and 𝑟′𝑖 in 𝐶𝑀AUX,𝑖, which they always know.

Given 𝑆𝐴𝑖 =
∑︀𝑛

𝑗=0𝐶𝑀𝑖,𝑗 and 𝑆𝐵𝑖 =
∑︀𝑛

𝑗=0 𝐵Token,𝑖,𝑗 we construct the disjunctive

proof to prove one of the bullets, and simulate the other:

∙ If 𝐶𝑀AUX,𝑖 is a recommitment of 𝑆𝐴𝑖 =
∑︀𝑛

𝑗=0𝐶𝑀𝑖,𝑗, then:

𝑙𝑜𝑔(𝐶𝑀AUX,𝑖−𝑆𝐴𝑖)(𝐵Token,AUX,𝑖 − 𝑆𝐵𝑖) =

𝑙𝑜𝑔(
∑︀

𝑣𝑖,𝑗𝐺+𝑟′𝑖𝐻−
∑︀

𝑣𝑖,𝑗𝐺−
∑︀

𝑟𝑖,𝑗𝐻)((𝑟
′
𝑖 · 𝑠𝑘𝑖)𝐻 − (

∑︀
𝑟𝑖,𝑗 · 𝑠𝑘𝑖)𝐻) =

𝑙𝑜𝑔((𝑟′𝑖−
∑︀

𝑟𝑖,𝑗)𝐻)(𝑠𝑘𝑖 · (𝑟′𝑖 −
∑︀

𝑟𝑖,𝑗)𝐻) = 𝑠𝑘𝑖

∙ If 𝐶𝑀AUX,𝑖 is a recommitment of 𝐶𝑀𝑖, then:

𝑙𝑜𝑔𝐻(𝐶𝑀AUX,𝑖 − 𝐶𝑀𝑖) =

𝑙𝑜𝑔𝐻(𝑣𝑖𝐺 + 𝑟′𝑖𝐻 − 𝑣𝑖𝐺− 𝑟𝑖𝐻) =

𝑙𝑜𝑔𝐻(𝑟′𝑖 − 𝑟𝑖)𝐻 = 𝑟′𝑖 − 𝑟𝑖

Note that if an evil bank 𝐸 creating the transaction decides to prove that they

know the difference between 𝑟′𝑖 and 𝑟𝑖 for their own entry, then each entry in the

transaction must be a commitment to 0 since the sum of all commitments have to

add up to 0 and 𝐸 cannot steal funds from another bank. Suppose that 𝐸 tried

to steal funds by putting a commitment to a negative amount in an entry that is

not their own and tries to avoid getting caught. Since we have a range proof on

39

𝐶𝑀AUX, they would have to prove they have enough assets since 𝐶𝑀AUX,𝑖 cannot be

a commitment to the negative value. In order to prove they have enough assets, they

need to know the secret key of the bank they are attempting to steal funds from, so

unless they comprise an entire bank, they cannot spend as that bank. Since all other

entries in a transaction must be positive, theirs must be negative to balance out the

entries, else the transaction will not be valid because the commitments do not sum to

0. The only way the sending bank can decide to prove 𝑟′ − 𝑟 in the disjunctive proof

is for every entry to be a commitment to 0.

Since each transaction relies on the sum of the previous 𝑛 − 1 rows for each col-

umn, a malicious bank cannot perform a replay attack using a previously constructed

transaction 𝑝𝑇𝑋Original because the proof of assets will not correctly incorporate the

addition of the value commitment 𝐶𝑀Original from the replayed row. A replayed trans-

action 𝑝𝑇𝑋Replay would attempt to be added at some point 𝑛+ 𝛿 in the ledger, and a

verifier calculating 𝑆𝐴 would notice 𝑆𝐴Replay does not include the extra 𝛿 transactions

that precede it and reject it from the ledger.

Consistency Proofs With 𝐵Token,𝑖 and 𝐵Token,AUX,𝑖, we need to ensure that a

bank is creating the tokens with the correct 𝑟𝑖 and 𝑟′𝑖 values used in the commitments

and not producing a corrupt entry that other banks cannot open to an auditor or

cannot be used to transact. To address this issue, the sending bank must produce

a consistency proof that shows the 𝑟𝑖 value used in 𝐶𝑀𝑖 is the same as the one in

the 𝐵Token,𝑖 = 𝑟(𝑠𝑘𝑖)𝐻 and that the 𝑟′𝑖 value used in 𝐶𝑀AUX,𝑖 is the same as the one

in 𝐵Token,AUX,𝑖 = 𝑟′𝑖(𝑠𝑘𝑖)𝐻. This consistency proof prevents a bank from lying in the

𝐵Token,𝑖 for each entry.

The proof follows from Figure 4-4. What gets written to the ledger is 𝐴1, 𝐴2, 𝑐, 𝑠1,

and 𝑠2 for both 𝐶𝑀𝑖 and 𝐶𝑀AUX,𝑖 so that banks and auditors can verify the consis-

tency with the associated 𝐵Token.

Overall, transfer transactions consist of:

∙ commitment 𝐶𝑀𝑖 and 𝐵Token,𝑖 of the original value,

∙ recommitment 𝐶𝑀AUX,𝑖 of either the total assets or the original value along with

40

the associated 𝐵Token,AUX,𝑖 ,

∙ consistency proofs between the re/commitments and 𝐵Token’s,

∙ and a range proof on the recommitment, along with a disjunctive proof stating

what the recommitment is to.

5.2.3 Ledger Functions

From the API description, we go into detail of what each function does on the ledger.

Setup At system start, either a trusted third party setting up the system or banks

and financial auditors choose cryptographic public parameters from a standard set of

parameters. These parameters include a cryptographic hash function ℋ, an elliptic

curve group E(Z𝑝), group generators 𝐺 and 𝐻, and scalar group modulus 𝑝. Once

parameters are chosen, each bank creates their own public/private key pair and shares

their public key with each participant, allowing for authenticated channels and the

capability to verify proofs.

Transfer A transfer transaction occurs between banks, and assets are only trans-

ferred when a sending bank produces a proof of sufficient assets. If all disjunctions in

the proof of assets prove a recommitment of the original value, then each value must

be 0 and no assets will be transferred. Note that these two types of transactions are

indistinguishable because banks choose different commitment randomness values in

each entry.

For each bank 𝑖 in the ledger, the following is included for a transfer transaction

𝑛:

∙ Commitment

– A commitment 𝐶𝑀𝑖 of 𝑣𝑖 with randomness 𝑟𝑖: 𝐶𝑀𝑖 = 𝑣𝑖𝐺 + 𝑟𝑖𝐻

– The multiplication of the randomness 𝑟𝑖 with their public key 𝑝𝑘𝑖: 𝐵Token,𝑖 =

𝑟𝑖𝑝𝑘𝑖

– A consistency proof that the randomness used in the commitment is the

same as the one multiplied with their public key

41

∙ CommitmentAUX

– A commitment 𝐶𝑀AUX,𝑖 to either the same value 𝑣𝑖 using a new randomness

𝑟′𝑖 or the bank’s entire balance
∑︀

𝑗 𝑣𝑖,𝑗 which is the sum of all entries in

their column including the current transaction

– The multiplication of the new randomness 𝑟′𝑖 with their public key 𝑝𝑘𝑖:

𝐵Token,AUX,𝑖 = 𝑟′𝑖𝑝𝑘𝑖

– A consistency proof that 𝑟′𝑖 is the same in the above two operations

∙ Proof of Assets

– A range proof on 𝐶𝑀AUX,𝑖 proving that it is in the range [0, 264).

– A disjunctive proof that either 𝐶𝑀AUX,𝑖 is a commitment to the their total

balance or a recommitment of the originally transacted value.

The commitment random values are chosen such that the sum of all 𝐶𝑀𝑖 in the

transaction add up to the identity of the elliptic curve group, ensuring that no new

value is created in this transaction. This requirement is secure as long as the bank

cannot solve the ECDLP on the two generators for our group, 𝐺 and 𝐻.

In order to add an entry to the ledger, all banks must verify each proof in the

transaction, as well as verify that the sum of the commitments in the transaction add

up to the identity of the elliptic curve group.

Issuance/Withdrawal An issuance/withdrawal transaction is produced by a

bank that aims to add/remove an amount of an asset to the system and is completely

public. This comes with a proof of knowledge of the bank’s secret key to assure others

are not forging this transaction.

Audit Auditing is covered in depth in the next chapter.

42

Chapter 6

Auditing Protocols

In this section, we describe two protocols for running an audit on the APL system:

private sums and Herfindahl Index calculation. For auditing we have two goals: (1)

to run functions that can provide effective measures of systemic risk, and (2) to

ensure that banks are verifiably honest in their responses. The protocols are built

off of linear functions on the Pedersen commitments stored on the ledger. These

functions let auditors learn aggregate information while hiding fine-grained details

about transactions.

Auditing is an interactive protocol between the bank being audited and the audi-

tor. The auditor requires access to a ledger and may be online connected to a ledger

verifying the transactions being added in real time, or may come online at a later

time to verify an active ledger.

6.1 Private Sums

Auditing sums is an interactive protocol between a bank 𝐴 and the auditor. The bank

𝐴 sends the total value of the asset they have to an auditor as well as an equivalence

proof that this value matches what is on the ledger. Since the auditor has access

to the ledger it knows the sum of 𝐴’s column, so they can verify that the answer

provided by the bank is consistent with what the auditor has seen.

The zero-knowledge proof of equivalence assures the auditor the sent value is the

43

Equivalence Σ Protocol

Prover Verifier

knows 𝑠𝑘𝐴 knows 𝑆𝐴− Σ𝑣𝐴,𝑖𝐺 = Σ𝑟𝐴,𝑖𝐻

knows 𝑆𝐵 = Σ𝐵Token,𝐴,𝑖 = Σ𝑟𝐴,𝑖𝑠𝑘𝐴𝐻

knows 𝑃𝐾𝐴 = 𝑠𝑘𝐴𝐻

𝑘
$← Z𝑝

𝑇1 = 𝑘(𝑆𝐴− Σ𝑣𝐴,𝑖𝐺)

𝑇2 = 𝑘𝐻

𝑐 = ℋ(𝐻,𝑆𝐴− Σ𝑣𝐴,𝑖, 𝑃𝐾𝐴, 𝑆𝐵, 𝑇1, 𝑇2)

𝑠 = 𝑘 + 𝑐 · 𝑠𝑘𝐴

𝑇1, 𝑇2, 𝑠, 𝑐

check 𝑐
?
= ℋ(𝐻,𝑆𝐴− Σ𝑣𝐴,𝑖𝐺,𝑃𝐾𝐴, 𝑆𝐵, 𝑇1, 𝑇2)

check 𝑠(𝑆𝐴− Σ𝑣𝐴,𝑖𝐺)
?
= 𝑇1 + 𝑐𝑆𝐵

check 𝑠𝐻
?
= 𝑇2 + 𝑐𝑃𝐾𝐴

Figure 6-1: Equivalence proof for sum of assets

same as what is on the ledger without the bank knowing the randomness used in each

commitment. The proof of equivalence consists of the bank 𝐴 proving knowledge

that their secret key 𝑠𝑘𝐴 is the solution to two different discrete logarithms. Figure

6-1 shows the auditing protocol with the sum of the commitments on the ledger

𝑆𝐴 =
∑︀𝑛

𝑖=0 𝐶𝑀𝐴,𝑖 =
∑︀𝑛

𝑖=0 𝑣𝐴,𝑖𝐺 +
∑︀𝑛

𝑖=0 𝑟𝐴,𝑖𝐻 and the sum of the supplemental

information 𝑆𝐵 =
∑︀𝑛

𝑖=0 𝐵Token,𝐴,𝑖 =
∑︀𝑛

𝑖=0 𝑟𝐴,𝑖𝑠𝑘𝐴𝐻. The auditor computes Σ𝑣𝐴,𝑖𝐺

with the value given by the prover (bank 𝐴), and subtracts it from 𝑆𝐴 to get Σ𝑟𝐴,𝑖𝐻.

The prover uses Σ𝑟𝐴,𝑖𝐻 as a base to prove that 𝑆𝐵 = Σ𝑟𝐴,𝑖𝑠𝑘𝐴𝐻 equals Σ𝑟𝐴,𝑖𝐻 times

𝑠𝑘𝐴 and that that same value is also the solution to log𝐻 𝑃𝐾𝐴 = log𝐻 𝑠𝑘𝐴𝐻.

Through this protocol, the auditor has an assurance that the total sum of an asset

of a bank is correct without the bank having to reveal their individual transactions.

If a bank attempted to provide a different total number of assets than those stored

on the ledger, then 𝑆𝐴− Σ𝑣𝑖𝐺 ̸= Σ𝑟𝑖𝐻 since the Σ𝑣𝑖 would not cancel out, and the

bank’s attempt to cheat would be detected.

44

6.2 Herfindahl Index

The Herfindahl Index builds on the sum protocol and is used by auditors to compute

the contagion of a particular asset [12]. The Herfindahl Index calculation consists of

getting the sums of all participants, summing this value to get the total number of

assets across the system, then doing a sum-of-squares on the market share of each

participant.

The Herfindahl Index protocol goes as so: for each participant 𝑖 up to all 𝑛

participants the auditor gets the sum 𝑎𝑖 via running the private sum protocol above

in parallel, then the auditor computes the total 𝑇 when all protocols complete, divides

each 𝑎𝑖 by the total 𝑇 to get market share and finally does a sum-of-squares on these

values:

𝐻 =
𝑁∑︁
𝑖=1

(︁𝑎𝑖
𝑇

)︁2

.

Note that the banks do not have to cooperate, and that the auditor can contact each

bank in parallel.

Security of the Herfindahl Index protocol is based the security of the private sum

protocol. As long as all sum protocols execute correctly, then the Herfindahl Index

protocol will also execute correctly.

45

46

Chapter 7

Implementation

We implement our system in Go and use a modified version of the btcec library

[9] that contains the parameters and methods to compute with the elliptic curve

secp256k1. We also take advantage of Go’s built-in SHA-256 implementation for use

as our cryptographic hash function. In total we have over 3200 lines of code, with

40% of it cryptographic operations.

7.1 Structure

We follow the client/server paradigm in the development of APL. Servers provide an

interface to APL that uses the API outlined in Definition 9, and clients take advantage

of this interface for different roles.

As APL is a distributed system with no central trusted party, each participant

runs an APL server and associated client based on their role. Participants must agree

on a set of cryptographic elliptic curve public key parameters that may be chosen by

a trusted party setting up the system, or by participants themselves. Public keys are

distributed to all participants before starting the system.

47

7.1.1 Servers

Servers contain code for networking, cryptography, and interacting with the permis-

sioned blockchain. Servers provide the foundation for APL and handle interactivity

with servers running on other machines.

The server code interfaces with the ledger used. For our initial implementation, we

built an in-memory append-only ledger that all participants interface with as a third-

party service. This service appends valid transactions and broadcasts the appends to

all banks. Each bank and the auditor keep a copy of the ledger to respond to/confirm

auditing queries. Banks keep plaintext of their total assets so that they can quickly

produce proof of assets in transactions and answer auditor queries.

My largest contribution was implementing the cryptographic components of APL,

consisting of Pedersen Commitments, and the zero-knowledge proofs in our system.

We opted to re-implement Blockstream’s range proofs [39] in Go for understandability

and ease of referencing in our code.

7.1.2 Clients

Clients are the gateway to the APL API, and provide methods depending on their

role. There are three types of clients:

∙ ledger clients that abstract the ledger technology used;

∙ bank clients that let banks manage keys and send transactions to the ledger;

and

∙ auditor clients that let auditors query banks and verify transactions as they get

appended to the ledger.

The ledger client lets banks and auditors append items to the ledger. In our

implementation, there is one ledger client that all banks and auditors talk with for

ease of consensus and message passing.

Bank clients initiate transactions on the ledger and respond to auditor queries.

For queries, bank clients currently can only respond to private sum queries.

48

Auditor clients initiate queries to each bank and perform client-side calculations

with bank responses to calculate systemic risk.

7.2 Optimizations

Caching on the bank and auditor clients improves computation speed. Currently

each client stores a rolling sum of commitments and supplemental information (𝑆𝐴

and 𝑆𝐵 respectively) so that they can quickly produce proof of assets and answer

queries from auditors. For the private sum protocol, instead of having to sum up a

subset of ranges, the ledger could include the sum up to a particular point so that

computation costs are replaced with storage costs. This would only include another

Pedersen commitment on the ledger, and would provide quick verification of subsets

of the ledger for queries that measure transaction volume for a particular duration.

Transaction throughput is sped up by parallelization of the range proof generation

and keeping a repository of range proofs for the value 0 for transactions that do not

include every participant.

49

50

Chapter 8

Evaluation

In this chapter we measure the performance of APL’s two features: appending to a

ledger, and auditing a ledger.

8.1 Setup and Tests

We evaluate our system on a machine with two 6-core Intel i7 x980 3.33 GHz 12 MB

cache processors and 24 GB of RAM running 64-bit Ubuntu 16.04.2. All services

run on separate processes on this single machine. A copy of the ledger is stored in

the memory of each process, and none of the processes use the disk. The processes

communicate via Go’s RPC framework.

We performed a test to measure the performance of appending to a ledger using

APL, and a test to measure the performance of auditing ledger content.

8.2 Appending to Ledger

Transaction throughput (appends to the ledger per second) scales in an exponentially

decaying manner with the number of participants in APL. Figure 8-1 shows an expo-

nential decay in the throughput as the number of banks increases in APL. This figure

represents all banks sending transactions at the same time to the ledger.

An entry in a transaction is around 29 KB, with 26 KB, or around 90%, of this

51

Figure 8-1: 𝑝𝑇𝑋 throughput with one to thirteen simultaneous transacting banks

space dedicated to range proofs alone. This is without point compression [9], which

can halve the representation of elliptic curves.

At two banks sending transactions in parallel, our throughput is around 10 trans-

actions per second, while at thirteen banks sending simultaneous transactions our

throughput is around 5 transactions per minute. Another way to look at this data is

looking at the latency to append a transaction to the ledger. Figure 8-2 is another

look at the same data, showing us with thirteen banks transacting simultaneously it

takes 10 seconds to add a transaction to the ledger.

Proofs for transactions takes around 12 ms to produce per entry, and take 10 ms

to verify per entry, although proof generation and verification can be done in parallel

for all entries. Proofs in transactions are only created at one point, but are verified

many times by each actor on the ledger.

As more banks simultaneously transact, transactions end up getting queued since

transactions need to be added in an ordered fashion. We run a test looking at the

throughput of transactions when only a subset of banks are simultaneously transact-

ing. Figure 8-3 shows a similar decay in throughput when only a subset of banks are

52

Figure 8-2: 𝑝𝑇𝑋 latency with one to thirteen simultaneous transacting banks

transacting as the number of banks increases. For each line, the change in throughput

as the number of banks increases is the cost to produce a new entry with the asso-

ciated proofs for each bank. The difference between lines is the cost of queuing for

having multiple banks simultaneously transact. Note that each line does not stretch

all the way to the left since it does not make sense for three banks to simultaneously

transact when there are only two banks.

Most of the time spent producing these transactions is in generating the proofs

for each entry. As new banks are added to the ledger, our throughput roughly gets

halved as we generate more zero-knowledge proofs to be added to the ledger.

8.3 Auditing

We evaluate auditing by running the private sum auditing protocol varying the num-

ber of transactions in the system.

53

Figure 8-3: 𝑝𝑇𝑋 throughput with two to fourteen banks, varying simultaneous
banks transacting from 1 to 12

Figure 8-4: Auditing latency of private sum protocol per number of transactions
stored on the ledger

54

Figure 8-5: Auditing latency of Herfindahl Index protocol per number of transac-
tions stored on the ledger

8.3.1 Private Sums

We implement and test the private sum protocol from Figure 6-1 and measure query

latency versus number of transactions. Figure 8-4 shows the latency for answering

and verifying queries as we increase the number of transactions on the ledger. The

results show that the query is roughly constant taking less than 25 𝜇s for most queries

as the number of transactions increases. A small querying time is possible because of

the caching and real-time updating by auditors and banks described in Section 7.2.

8.3.2 Herfindahl Index

The Herfindahl Index calculation follows from the private sum calculation with an

added requirement to sum the square of the market shares of each bank. Figure

8-5 shows the latency for performing the Herfindahl Index protocol, which roughly

resembles the private sum protocol results with most queries under 25 𝜇s and a

constant slope. Figure 8-6 compares the differences in computation time between the

Herfindahl Index and private sums, with negative values meaning the Herfindahl Index

55

Figure 8-6: Difference in performance between Herfindahl Index protocol and private
sum protocol

protocol outperformed the private sum protocol and positive values the opposite.

This balance around the 𝑥-axis shows that the extra calculations are negligible in

calculating the Herfindahl Index.

56

Chapter 9

Conclusion

We have shown a new way to provide auditability to private data on permissioned

blockchains that differs from existing solutions. Our scheme hides transaction amounts,

and the transaction graph of participants, while allowing authorized third parties to

perform computations in coordination with participants. We have also applied our

techniques to financial auditing, providing the capability to perform real-time sys-

temic risk analysis to ensure provably correct results. The fact that the assets stored

on the ledger are the true record, and not a copy of the record, guarantees that banks

cannot falsify information and that auditors run their functions on true holdings.

In exploring other potential use cases, APL fits nicely in problems that meet the

following conditions:

∙ there are a known set of entities (be it through real identities or pseudonymous

via public keys);

∙ transactions occur between these entities;

∙ these entities require privacy of the transaction graph and transaction amounts;

∙ third parties require assurances to the correctness of the system, or require

analysis of the transaction information;

∙ fine-grained analysis of the transactions requires privacy.

57

9.1 Known Challenges

We do not provide any sort of differential privacy [26]. It is possible for a malicious

auditor to query for the total of 𝑛 − 1 transactions and then 𝑛 transactions and

determine the individual transaction amount of the 𝑛th row. Doing this repeatedly

would effectively leak the transaction amounts and graph of all participants. A bank

can simply not respond to auditing queries that might reveal too much information.

For example, the banks and auditors could agree ahead of time what types of queries

are appropriate, and the auditor could attach a digital signature to all queries. It is

important to note that providing differential privacy would also limit the ability to

get exact systemic risk measurements.

Our ledger requires a strict ordering for new transactions to be added to it. A

bank adding a new transaction must use all transactions that appear before it to

compute the proofs. This means that a new transaction cannot be created unless it

has all previous transaction information included in it. If two or more banks attempt

to add a new transaction to the ledger, only one will accept and the rest will have

to update their transactions with the new data. This limits our throughput, but

updating of the transactions is relatively quick, relying on updating 𝐶𝑀AUX and its

associated 𝐵Token and the proof of assets.

9.2 Future Work

Currently we are working to increase throughput by minimizing cryptographic com-

putation time, efficiently supporting multiple assets on a single ledger, and extending

the protocol set for advanced auditing protocols.

Most of the computation time to append to the ledger requires creating and veri-

fying the range proofs. We are working to limit our reliance on range proofs, and/or

produce more efficient constructions.

Efficiently supporting multiple assets on a single ledger is an important require-

ment of our work. Using similar constructions as Confidential Assets [39] [20] to

58

incorporate and hide the asset type requires producing a range proof per asset, which

significantly decreases ledger throughput.

With the private sum auditing protocol developed, we want to extend the set of

supported auditing protocols to provide more sophisticated types of queries. One

area of interest is being able to run machine learning or other artificial intelligence

functions over private data [38] [4]. Along with more advanced queries would come

UI/UX improvements so that banks and auditors can interact with our system in an

intuitive fashion.

While our initial use-case is financial auditing, there are a couple of areas of

interest where we think APL could be taken advantage of that we’re exploring such

as electronic medical records, supply chain management, and Internet of Things.

59

60

Bibliography

[1] Financial Stability Monitor | Office of Financial Research. Ac-
cessed on August 13, 2017. https://www.financialresearch.gov/

financial-stability-monitor/.

[2] Hyperledger home. Accessed August 8, 2017. https://www.hyperledger.org.

[3] Kadena: Scalable Blockchain | Smarter Contracts. Accessed August 8, 2017.
http://kadena.io/.

[4] Machine Learning with Financial Time Series Data | Solutions. Ac-
cessed on August 14, 2017. https://cloud.google.com/solutions/

machine-learning-with-financial-time-series-data.

[5] Quorum | J.P. Morgan. Accessed August 8, 2017. https://www.jpmorgan.com/
country/US/EN/Quorum.

[6] U.S. GAO - The Yellow Book. Accessed on August 12, 2016. http://www.gao.
gov/yellowbook/overview.

[7] Zcash - All coins are created equal. Accessed December 12, 2016. https://z.
cash/?page=0.

[8] IC3 - The Initiative For Cryptocurrencies & Contracts, July 2017. http://www.
initc3.org/.

[9] Package btcec implements support for the elliptic curves needed for bitcoin., July
2017. https://godoc.org/github.com/btcsuite/btcd/btcec#PrivateKey.

[10] Crypto StackExchange User: 7sujit. Cryptanalysis - why can’t the com-
mitment schemes have both information theoretic hiding and binding
properties? - cryptography stack exchange. Accessed June 27, 2017.
https://crypto.stackexchange.com/questions/41822/why-cant-the-commitment-
schemes-have-both- information-theoretic-hiding-and-bind/41834.

[11] Emmanuel A. Abbe, Amir E. Khandani, and Andrew W. Lo. Privacy-preserving
methods for sharing financial risk exposures, 2011.

[12] Emmanuel A. Abbe, Amir E. Khandani, and Andrew W. Lo. Privacy-preserving
methods for sharing financial risk exposures. American Economic Review,
102(3):65–70, May 2012.

61

[13] Robleh Ali, Nicholas Vause, and Filip Zikes. Systemic risk in derivatives markets:
A pilot study using cds data, July 2016. Available at SSRN: https://ssrn.com/
abstract=2809667 or http://dx.doi.org/10.2139/ssrn.2809667.

[14] Digital Asset. The digital asset platform. Accessed on August 3,
2017. http://hub.digitalasset.com/hubfs/Documents/Digital%20Asset%

20Platform%20-%20Non-technical%20White%20Paper.pdf.

[15] Austin-Williams. Define ‘monetary base’ and ‘audit’ in the context of zcash ·
issue 2289 · zcash/zcash. Accessed July 10, 2017. https://github.com/zcash/
zcash/issues/2289.

[16] Paul Eric Byrnes, CA Al-Awadhi, Benita Gullvist, Helen Brown-Liburd,
CR Teeter, J Donald Warren Jr, and Miklos Vasarhelyi. Evolution of audit-
ing: from the traditional approach to the future audit. Audit Analytics, 71,
2015.

[17] Agostino Capponi. Systemic Risk, Policies, and Data Needs, chapter 8, pages
185–206.

[18] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Pro-
ceedings of the Third Symposium on Operating Systems Design and Implementa-
tion, OSDI ’99, pages 173–186, Berkeley, CA, USA, 1999. USENIX Association.
http://dl.acm.org/citation.cfm?id=296806.296824.

[19] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed E. Kosba, Ari Juels, and Elaine
Shi. Solidus: Confidential distributed ledger transactions via pvorm. IACR
Cryptology ePrint Archive, 2017:317, 2017.

[20] Chain. Hidden in Plain Sight: Transacting Privately on a Blockchain, February
2017.

[21] Mario Christodoulou. U.k. auditors criticized on bank crisis.
Wall Street Journal, March 2011. http://www.wsj.com/articles/

SB10001424052748703806304576232231353594682.

[22] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark, and Dan
Boneh. Provisions: Privacy-preserving proofs of solvency for bitcoin exchanges.
In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’15, pages 720–731, New York, NY, USA, 2015. ACM.

[23] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs
of stake. Cryptology ePrint Archive, Report 2016/919, 2016. http://eprint.

iacr.org/2016/919.

[24] Ivan Damgård. On 𝜎-protocols. Cryptologic Protocol Theory 2010, v.2, 2002.
Available at http://www.cs.au.dk/~ivan/Sigma.pdf.

62

[25] Lisa Du. To Understand JPMorgan’s Trading Fiasco You Have To Go Back To
2005.

[26] Cynthia Dwork. Differential privacy. In Proceedings of the 33rd Interna-
tional Conference on Automata, Languages and Programming - Volume Part
II, ICALP’06, pages 1–12, Berlin, Heidelberg, 2006. Springer-Verlag.

[27] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Proceedings on Advances in cryptology—
CRYPTO ’86, pages 186–194, London, UK, UK, 1987. Springer-Verlag.

[28] FinCEN. United states department of the treasury financial crimes enforcement
network | fincen.gov. Accessed June 27, 2017. https://www.fincen.gov/.

[29] Christina Garman, Matthew Green, and Ian Miers. Accountable privacy for de-
centralized anonymous payments. Cryptology ePrint Archive, Report 2016/061,
2016. http://eprint.iacr.org/2016/061.

[30] Mike Hearn. Corda: A distributed ledger. https://docs.corda.net/_static/
corda-technical-whitepaper.pdf.

[31] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gener-
als problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982. url-
http://doi.acm.org/10.1145/357172.357176.

[32] Ueli Maurer. Unifying zero-knowledge proofs of knowledge. In Proceedings of the
2Nd International Conference on Cryptology in Africa: Progress in Cryptology,
AFRICACRYPT ’09, pages 272–286, Berlin, Heidelberg, 2009. Springer-Verlag.

[33] Silvio Micali. ALGORAND: the efficient and democratic ledger. CoRR,
abs/1607.01341, 2016. http://dblp.uni-trier.de/rec/bib/journals/corr/
Micali16.

[34] Edward V Murphy. Who regulates whom and how? an overview of us financial
regulatory policy for banking and securities markets. 2015.

[35] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. http:
//bitcoin.org/bitcoin.pdf.

[36] Sunoo Park, Krzysztof Pietrzak, Albert Kwon, Joël Alwen, Georg Fuchsbauer,
and Peter Gaži. Spacemint: A cryptocurrency based on proofs of space. Cryptol-
ogy ePrint Archive, Report 2015/528, 2015. http://eprint.iacr.org/2015/

528.

[37] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Proceedings of the 11th Annual International Cryptology Con-
ference on Advances in Cryptology, CRYPTO ’91, pages 129–140, London, UK,
UK, 1992. Springer-Verlag.

63

[38] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Mo-
riai. Privacy-preserving deep learning via additively homomorphic encryption.
Cryptology ePrint Archive, Report 2017/715, 2017. http://eprint.iacr.org/
2017/715.

[39] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter
Wuille. Confidential assets, 2017. 4th Workshop on Bitcoin and Blockchain
Research.

[40] R3. R3. Accessed July 2, 2017. http://www.r3cev.com/.

[41] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Proceedings of the 9th Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’89, pages 239–252, London, UK, UK, 1990. Springer-
Verlag.

[42] Tendermint. Tendermint. https://perma.cc/X7XM-7LRY.

64

