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Abstract
SinceBitcoinand theUnspentTransactionOutput (UTXO)modelwere introduced
by Satoshi Nakamoto over a decade ago, there have been many important issues
identified with the UTXO model; the most important being that it is hard to ex-
tend the model to accommodate more complex use cases, such as those related
to decentralized finance. Currently, Ethereumhasmany decentralized exchanges
which allow users to seamlessly make trades. Performing a trade on chain on
Bitcoin is quite difficult; currently, the most elegant way is to set up a Discreet
Log Contract (DLC) between you and your counter-party. However, this currently
have many downsides; for example they are not transferable (i.e. once Alice and
Bob signup for theDLC, they are stuck in theDLCuntil settlement or theyboth in-
teractively agree to leave). We fix this by introducing the Transformable Discreet
Log Contract (TDLC), which allows a third party, Carol, to swap in for either Al-
ice or Bob midway through the contract with reduced interaction and the Truly
Transformable Discreet Log Contract (TTDLC), which allows multiple parties to
seamlessly trade the contract around between them. With both the TDLC and the
TTDLC, the party swapping into the contract only has to interact with the single
party swapping out. The end goal for the work presented in this thesis is to help
improve the usability of Bitcoin for advanced use cases such as those relevant to
decentralized finance.

Thesis Supervisor: Neha Narula
Title: Director, Digital Currency Initiative
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Chapter 1

Introduction

First introduced in 2008, Bitcoin was the world’s first decentralized cryptocur-
rency. The original idea of cryptocurrencies was to allow payments to be pro-
cessed in a decentralizedmanner rather than relying on a central entity, though it
has evolved tomuchmore than this in recent times [6].

However, at themoment, Bitcoin is victim tomany weaknesses. On Ethereum
and similar chains, decentralized exchanges exist, which allow users to perform
trades and swaps with ease. Due to the way Bitcoin is structured, the solutions
existing on Ethereum are not viable on Bitcoin. There are some existing ideas on
Bitcoin, which will be mentioned in the related work, that address some of the
issues, but aremuchweaker than the solutions on Ethereum due to the existence
of smart contracts on Ethereum. We aim to introduce additional ideas to improve
some of the existing solutions on Bitcoin surroundingmaking swaps and trades.

1.1 Intro to the UTXOModel

TheUnspent TransactionOutput (UTXO)model is theprecursor to all of the other
cryptocurrency models that exist today. Nakomoto first introduced the idea in
2008 in theBitcoinWhitepaper. In order to understand theUTXOmodel, wemust
firstunderstandwhat transactions inBitcoinare composedof. Each transaction is
composed of a certain number of inputs and a certain number of outputs, where
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the sumof the input amountsneeds tobeat least asmuchas the sumof theoutput
amounts (so you can’t create Bitcoin out of thin air).

Each input is composed of the following components:

1. Transaction ID that references an unspent output and index

2. Script Signature – This is a way to prove that you can satisfy the conditions
to spend the unspent output that is being spent.

Each output is composed of the following components:

1. Amount

2. Output index

3. Script PubKey – This indicates how the output can be spent by a later input.

Once the transaction is created, theTransaction ID(TXID) is generatedbydou-
ble hashing (using SHA256) the transaction contents (minuswitnesses, which are
a special case which will be discussed later). This TXID will be used by future
transactions to reference a created output; for example, say my transaction has
two outputs and a TXID X . Then, future transactions can use X as well as the rel-
evant output index (either 0 or 1, as there are 2 outputs) in order to spend the un-
spent output [6].

1.1.1 SegregatedWitness V0

A small detail that must be noted is that, in pre-segwit Bitcoin, signatures that
prove you are able to spend a specific unspent output are part of the transaction
data that is double hashed in order to create the TXID. This is annoying primar-
ily because you must commit to a transaction by signing it before knowing how
you might want to spend the outputs, which makes many use cases impossible.
In more detail, there are use cases where we want to spend the output of an un-
signed transaction. For example, if we want to be able to revert a transaction at
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some point if certain conditions are met, we can take the output of the unsigned
transaction, create a transaction spending it back to the original owners, get their
signatures on the transaction, and thenhave it put onchain later if necessary. This
guarantees that refunding will be possible in the event that we commit to the un-
signed transaction. Such use cases were originally impossible on Bitcoin, but de-
velopers soon came up with a solution to this. This solution is known as Segre-
gatedWitness, and it allows one to put signatures in thewitness data, which is not
included in data which is hashed to produce the TXID. This opens up many op-
portunities – you can, for example, create a transaction’s format without signing
it and still know its TXID so that you can spend its output with other transactions
[5].

This will lay the groundwork that we need to understand Discreet Log Con-
tracts.

1.1.2 Other Terminology

Beforewedive intoDLCs,weneed togoover someotherbasic terminology related
to Bitcoin.

1. M-of-N Multi-signature Outputs – This is an output whose Script PubKey
indicates that it can only be spent if we have M signatures out of the possi-
ble set of N determined keys. For example, a 2-of-3 Multi-signature Output
would involve 3 predetermined keys and the output can only be spent if at
least 2 of those keys provide a signature in the spending input’s scriptSig.

2. Pay to Public KeyHash (PKH) vs Pay to Script Hash (PSH) – Pay to public key
hashmeans creating aUTXOwhich only requires a signature froma specific
public/private key pair. Pay to Script Hash means creating a UTXO which
canbe spent by anyonewhoprovides data (most often including signatures)
that meets the specifications of the script.

3. Block height – This refers to the current block that the Bitcoin blockchain is
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on.

4. Check Locktime Verify (CLTV) – This is an opcode that can be included in a
script to require that the current block height that the transaction is being
executed on is at least some height.

5. Check Sequence Verify (CSV) – While CLTV is an op code that acts an abso-
lute time lock (i.e. it checks that an output is being spent on at least some
height), CSV is a relative time lock. It checks that the height difference be-
tween when the output is being spent and when the output is created is at
least some fixed value.

6. SIGHASH flags – Usually, when we sign off on a transaction, we sign off on
all the contents. However, certain SIGHASHflags allow us to sign off on only
specific parts of the transaction contents rather than all of it.

7. SIGHASHALL–This is the standardSIGHASHtype,whereweessentially just
sign on the entire transaction contents.

8. SIGHASH SINGLE | ANYONECANPAY – This is a specific type of SIGHASH
flag that allows us to create a signature that only signs off on the first input
and the first output. This will allow for arbitrary other inputs and outputs to
be added later. This sighash type is generally used in the event that some-
one only cares about what the first input and output of a transaction is but
doesn’t care what happens with the rest of the transaction. As an example,
say that there’s a party of friends that is attempting to settle a bet. The first
friend, Bob, may only care that he gets sent a certain amount of coin using
a specific UTXO as input, and can use SIGHASH SINGLE | ANYONECANPAY
to represent this [6].

9. SIGHASHANYPREVOUT |ANYONECANPAY |SINGLE–This is a specific type
of SIGHASHflag that allows us to create a signature that only signs off on the
spending condition of the first input and the entire first output. This also
will allow for arbitrary other inputs and outputs to be added later [9].
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1.2 Intro to the AccountModel

In the Ethereum accountmodel, there are two different types of addresses: exter-
nally owned accounts and contract accounts. Externally owned accounts do not
maintain any state storage, but dohave an account balance associatedwith them.
This is somewhat distinct from theUTXOmodel, in whichUTXOs can be spent as
long as you can prove you can spend them. In the account model, however, the
private key just owns the balance in the associated externally owned account.

Contract accounts, on the other hand, have associated storage, which is ex-
tremely powerful and is the reason that making trades and swaps is somuch eas-
ier in the account basedmodel. This storage is non-volatile; it is persistent across
transactions. Contracts are essentially just some bytecode that is deployed to the
blockchain, and this bytecode is executed whenever the contract is called. It is
important to note that contracts themselves cannot send transactions; they can
only be called as a result of a transaction sent by an externally owned account. Be-
cause these contracts have associated persistent storage, it ismuch easier to store
data necessary to operate a decentralized exchange, such as amount of liquidity
on both sides for example.

On account based block-chains, there are twomain types of decentralized ex-
changes. Oneareautomatedmarketmakers,whichessentiallyhave liquidityproviders
provide liquidity on both sides. Traders are then able to swap coin from one side
to the other side for some small fee by trading against liquidity providers.

The other type of exchange is order bookbased exchanges, whichoperate sim-
ilar to existing centralized exchanges except they process the order book in a de-
centralizedmanner [8].

1.3 AutomatedMarket Makers

AutomatedMarketMakers (AMMs)works ina fairly straightforward fashion. AMMs
each have a bunch of pools, each of which allows trades between two tokens. For
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a specific pool, the AMM holds the amount of the first token and the amount of
the second token in the pool.

There are two main types of operations on a pool: trades and liquidity addi-
tions/deletions. With trades, the user requests to trade a certain amount of token
A for some amount of token B. The AMMuses the amount of tokens on both sides
of the pool and the amount of token A that the user is putting in to calculate how
muchof tokenB theuser shouldgetout. Thepool then sends this amountof token
B to the user and receives the promised amount token A from the user. The AMM
usually levies a transaction fee (generally a percentage of the amount of token A
the user is putting into the pool) for each trade.

The formula for most standard AMMs is very simple. Let’s say that A0 and B0

are the amount of reserves in the AMM of the first and second token respectively
before any trades happen. Similarly, A1 and B1 are the amount of reserves in the
AMM of the first and second token after a trade happens. For the following anal-
ysis,wewill assume the transaction fee is 0. Wemust have:

A0 ·B0 = A1 ·B1 (1.1)

Let’swork throughanexample. Let’s say that A0 = B0 = 2 initially. If auser trades
2of thefirst token for the second token, then the amount theywill get back is fairly
easy to calculate:

First, we see that A1 = A0 +2 = 2+2 = 4. Then, from 1.1, we find that:

A0 ·B0 = A1 ·B1 ⇒ 2 ·2 = 4 ·B1 ⇒ B1 = 1

This means that the user receives B0 −B1 = 2−1 = 1 of the second token back
from the AMM. This also shows us why having liquidity in the pool is important.
For example, if initially we had A0 = B0 = 10 and again the user traded 2 of the first
token for the second token, we can redo the analysis:

We see that A1 = A0 +2 = 10+2 = 12. Then, from 1.1, we find that:

A0 ·B0 = A1 ·B1 ⇒ 10 ·10 = 12 ·B1 ⇒ B1 = 25
3

Thismeans that the user receives B0−B1 = 10− 25
3 = 5

3 of the second token. With
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higher liquidity, users can make larger trades while maximizing the amount that
they receive out.

With liquidity additions, a user can add in a certain amount of token to both
sides of the pool in order to mint liquidity provider (LP) tokens, which entitle the
user to receive a share of the entire pool (including transaction fees collected).
Let C0 and D0 be the amount of the first and second token the user adds into the
pool. Furthermore, let S be the number of currently existing LP tokens. It should
be the case that C0

A0
= D0

B0
. Furthermore, the number of LP tokens that the user will

receive back is C0
A0

·S. As an example, say that A0 = B0 = 2 and S = 6. Then, the user
could potentially send C0 = D0 = 1 tokens to the AMM, and would receive back
C0
A0

·S = 1
2 ·6 = 3 additional newly minted LP tokens.

With liquidity deletions, the user withdraws their liquidity from the pool, and
receives some amount of token A and some amount of token B as a result. If the
user sends X LP tokens to the pool, they will receive back X

S · A0 of the first token
and X

S ·B0 of the second token. If we have A0 = B0 = 3, S = 9, and X = 3, then the user
would receive back 3

9 ·3 = 1 of the first token and 3
9 ·3 = 1 of the second token.

In order to execute both trades and liquidity additions/deletions, the funds
that the user needs for the transactions need to be sent to the smart contract at
some point. For example, if the user is making a trade, the smart contract would
give the user some token in exchange for some token of another type. The smart
contract would assume ownership of the user’s input funds. Because smart con-
tract code is public and verifiable on the blockchain, anyone can verify that the
smart contracts will execute these operations fairly and reliably [1].

The accountmodel allows formuchmore flexibility than theUTXOmodel, es-
pecially due to the ability to deploy smart contracts which can execute code in
a publicly known and verifiable manner. However, there are ways to get around
some of the issues with the UTXOmodel.
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1.4 Howcanwegetaroundwhat theUTXOModelLacks?

In theUTXOmodel, the reason that it’s so hard to create a decentralized exchange
is because of the lack of persistent, mutable storage capabilities on Bitcoin. Fur-
thermore, there are no other types of programmable tokens on Bitcoin like there
areonEthereum, so there isnothing toexchange. BecauseBitcoin requiresa spender
to prove that they can spend the inputs, but does not indicate how the inputs can
be spent, it is impossible to enforce the generalized state changes that these de-
centralized exchanges require without building on top of Bitcoin. Without build-
ing on top of bitcoin, we can’t dynamically keep track of data needed to operate
the exchange, such as the order book or liquidity on both sides [6]. There are
ways to build on top of Bitcoin to introduce these capabilities, but they either lead
to lack of decentralization, are inefficient, or require specific restricting assump-
tions. The ExtendedUTXOmodel that Cardano uses, for example, succeeds in ex-
tending Bitcoin script and allowing more complex validation scripts to be safely
used on Cardano. However, it suffers from the same issue as the UTXOmodel in
that it only allows users to spend a specific UTXO once per block, which is par-
ticularly disadvantageous compared to Ethereum. If multiple users want tomake
a DEX trade on Ethereum, that would be fine since they can all interact with the
smart contract, but on Cardano, all state changes besides the first one cannot go
through since they would rely on the first state change [2].

However, evenonBitcoin, creating some type of contractwhose terms are pre-
determined that simulates a tradewould still be possible, because the parties can
essentially pre-sign transactions that settle the contract rather than doing so dy-
namically. This is the basic idea behind discreet log contracts.

1.5 Intro to Futures Contract Trading

On centralized exchanges, the idea of a futures contract is fairly straightforward.
Essentially, you are attempting to predict the price of an underlying asset at some
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point in the future.

There are two sides to a futures contract: long and short. If you buy (i.e go
"long")ona futures contract, then, assumingyouholduntil expiration, yourprofit
will be the price of the contract at expirationminus the price you bought the con-
tract at. On the other hand, if you sell (i.e. go "short") and hold until expira-
tion, your profit will be the price of the contract at expirationminus the price you
bought at.

There are two other extremely important properties of futures contracts:

1. Youcan trade futures contracts aroundwithotherpeople (i.e youdonotnec-
essarily need to hold until expiration).

2. Physical delivery of the underlying item is usually enforced by the contract

3. You don’t actually need to put in the maximum possible required amount
of capital in order to enter into a futures position; you can usually trade on
leverage. For example, say that you want to go long on 5 futures contracts at
50dollars each. Youdon’tneed toactuallyputdown 50·5 = 250dollars; rather,
you just put down a percentage and if the market moves against you, your
broker will likely liquidate you. This makes futures contracts less capital
constraining. Neither theDLC,TransformableDiscreetLogContract (TDLC),
nor theTrulyTransformableDiscreetLogContract (TTDLC)will support this
use case; all of themwill require both parties to commit to themaximum re-
quired amount of capital beforehand. However, because the payout struc-
ture does not need to be 1:1, the participants can get amplified sensitivity to
volatility by committing different amounts ofmoney. It is important to note
that the participants can never losemoremoney than the amount commit-
ted. [4].
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1.6 Intro to DLCs

The Discreet Log Contract (DLC) was invented by Dryja as a means to allow trad-
ing on Bitcoin. Essentially, two parties, after performing some pre-computation,
can enter into a contract that can be settled at some point in the future based on
the outcome of some event. The payout structure is potentially different for every
single outcome.

In order to achieve this, we need to rely on a trusted oracle model (Note: This
is different from the standard Oracle Model present in cryptography), where we
trust the oracle to produce a different signature for every outcome of the event
(this is howwe knowwhich payout structure is valid on chain). However, the ora-
cle itself doesnot evenknowabout theexistenceof thecontracts. Theoracle could
be offering a service with a formatted price feed, for example, that many people
might read and use. The only step where the oracle is involved is publishing the
right signature for the outcome that the participants are betting on [3].

Let’s go through an example to explain how the discreet log contract works:
Let’s say that Alice and Bob are betting on the outcome of a game which has two
outcomes: win or lose. Then, before the discreet log contract can actually be put
on chain, we need to perform some precomputation:

1.6.1 Pre-computation

The pre-computation involves several steps: First, we must create the layout of
some transactions. It is important to note thatwe do not actually put any transac-
tions on chainwhile creating transaction layouts. Furthermore, we use SegWit for
all transactions here, so that we can determine the TXID of a transaction without
actually putting it on chain.

We create transaction layouts in the following order:

1. The funding transaction. Essentially, the inputs to this are just a UTXO from
Alice and a UTXO from Bob of the same amount (though practically, Alice
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and Bob will just use UTXOs of arbitrary amounts and send some money
back to their PKH as change). The output is a 2-of-2 multi-signature output
betweenAlice andBob. Note that no signatures have been created or broad-
casted yet. The funding transaction would look as shown in 1-1.

2. The contract execution transactions (CET). Because we know the TXID of
the funding transaction,wecanuse it as an input toourCETs. BothAlice and
Bob create one CET for each possible outcome of the contract which repre-
sents thepayout structure. Say thatAlice is creating aCET for the "WIN"out-
come. She creates the layout for a transaction which has the funding trans-
action UTXO as an input and pays to her own PKH as the first output (she
is essentially retrieving the amount that she won from the contract by do-
ing this) and a second P2SH output. Essentially, this script will allow Bob to
spend the UTXO if he can prove that the oracle signed on the "WIN" out-
come. If, after some time, Bob has not tried to sped the UTXO (which likely
implies that he does not have the correct oracle signature), the script allows
Alice to spend the UTXO. The CETs that Bob creates are symmetric (i.e. es-
sentially Alice andBob swap roles). TheCET associatedwith the "WIN" out-
come that Alice would sign look as shown in 1-2.

Thenext step is signing. Alicewill take theCETs that shehascreated, sign them,
and send them to Bob. Bob will do the same.
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Figure 1-1: Funding transaction

Figure 1-2: Contract Execution Transaction
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1.6.2 Execution

Once all the CETs have been signed, if both parties are satisfied, they can sign the
funding transaction (in any order) and put it on chain. It is important that these
CETs are signed before the funding transaction is signed; if the funding transac-
tion is signedfirst, then it canbeputonchainwithoutanyguarantees that thecon-
tract can be settled through a CET. This means that one party can hold the other
party’s funds hostage. Now, after the settlement timehas been reached, the oracle
will publish the correct signature. Either party can find the CET corresponding
to the outcome, which the counter-party has already signed, sign, and put it on
chain. After the CET is put on chain, the party who put the CET on chain must
still spend the PSH output using the oracle signature. This enforces that the party
put the correct CET on chain; otherwise, they will not be able to spend the PSH
output.

Note that cooperationbetween the twoparties is still possiblebefore theCET is
put on chain. Furthermore, in the event of oracle failure, there is a timeout trans-
action created at the beginning which sends both parties their funds back. Also,
if the parties don’t want to go through the hassle of finding and putting a CET on
chain, they canmutually agree on and sign a transaction that sends themboth the
correct amount of money [3].

1.7 Disadvantages of DLCs

The core idea of DLCs is to be able to model futures contracts, except in a decen-
tralized fashion. However, as we’ve referenced earlier, there are a fewmajor issues
with DLCs:

1. They are non-transferable. This means that, once you enter into a DLC, you
cannot exit it until the time you agreed to exit without cooperation.

2. They require both sides to commit the maximum amount of capital neces-
sary before entering into the contract.
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Noneof thesolutionsweproposesolveproblem2. However, theTransformable
Discreet Log Contract partially solves problem 1 while the Truly Transformable
Discreet Log Contract fully solves it.

1.8 RelatedWork

1.8.1 The Lightning Network: Payment Channels

Introduction

Onemajor problem that faces the blockchain today is throughput. With somany
incoming transactions, each of these transactions must be put into a block in an
efficient fashion. However, traditionalmethods todo this, suchas increasingblock
size, lead to decreased decentralization.

One way to tackle this problem is to fight it at the protocol level. Imagine that
personsAandBwant topayeachotheramultitudeof times. Normally, theywould
have to create a transaction on chain whenever one wants to pay the other.

However, with the lightning network, we can avoid putting all these transac-
tions on chain. The two will simply create a payment channel, continuously pay
each other through the channel, and then put the final result on chain [7].

We discuss the lightning network because it connects to the idea of using Bit-
coin script andsegregatedwitness inaclevermanner,whichenablesus to support
more operations than originally thought on Bitcoin. Let’s explore how this works
inmore detail.

It’s important to note that the lightning network uses more than just payment
channels; it alsodoes routingover anetwork. Itmakesanetworkof thesechannels
and routes payments through these channels. However, we will only focus on an
individual payment channel.
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Payment Channels

Initially, one party funds the payment channel. Say that Alice initially owes Bob
0.5 BTC. This funding transaction (let’s call it Transaction A) would look like this:

Transaction A

Inputs:

1. Alice UTXO (1 BTC)

Outputs:

1. Alice and BobMultisig (1 BTC)

Before this is signed by either party, however, an "initial commitment" trans-
actionmust be created. Let’s call this initial commitment transactionTransaction
B. This commitment transaction would look different for both parties. The com-
mitment transaction given to Bob by Alice would look like the following:

Inputs:

1. Alice and BobMultisig (1 BTC)

Outputs:

1. Alice PKH (0.5 BTC)

2. (Bob PKH ANDOP CSV) OR (Alice PKH AND Revocation Key) (0.5 BTC)

Alice signs this transaction and gives it to Bob, who can then sign and broad-
cast whenever he wishes.

The idea behind this revocation key is straightforward: Bob holds a key-pair
and in order to nullify the above transaction, he can simply reveal the private key.
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If Bob proceeds to sign and send transaction B on chain afterwards, Alice can
spend the first output as well as the second output with the revocation key.

Similarly, the commitment transaction given to Alice by Bob looks like the fol-
lowing:

Inputs:

1. Alice and BobMultisig (1 BTC)

Outputs:

1. Bob PKH (0.5 BTC)

2. (Alice PKH ANDOP CSV) OR (Bob PKH AND Revocation Key) (0.5 BTC)

Bob signs this transaction and gives it to Alice, who can then sign and broad-
cast whenever she wishes.

Transaction A is then broadcasted on chain.
Now, Alice and Bob can start sending each other Bitcoin through the payment

channel. If Alice wants to send Bob some amount of coin, then they would calcu-
late their new balances. Say Alice has 0.4 Bitcoin and Bob has 0.6 has Bitcoin after
the transfer. They would first both reveal their revocation keys for the previous
commitment transaction (i.e. Transaction B in this case).

Theywould then create and sign a newpair of commitment transactions. Let’s
call these new commitment transactions Transaction C.

The new commitment transaction that Alice gives to Bob looks like the follow-
ing:

Inputs:

1. Alice and BobMultisig (1 BTC)

Outputs:
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1. Alice PKH (0.4 BTC)

2. (Bob PKH ANDOP CSV) OR (Alice PKH AND Revocation Key) (0.6 BTC)

Alice signs this transaction and gives it to Bob, who can broadcast it whenever
he wants.

Similarly, the new commitment transaction that Bob gives to Alice looks like
the following:

Inputs:

1. Alice and BobMultisig (1 BTC)

Outputs:

1. Bob PKH (0.6 BTC)

2. (Alice PKH ANDOP CSV) OR (Bob PKH AND Revocation Key) (0.4 BTC)

Bob signs this transaction and gives it to Alice, who can broadcast it whenever
she wants.

Every time one party wants to send the other money, they repeat this process
of broadcasting the revocation keys and then recreating the commitment trans-
actions.

Any party can close the channel at any time, regardless of their balance, by
broadcasting themost recent commitment transaction. For example, if either Al-
ice or Bob wanted to close the channel after the latest commitment transaction,
eitherof themcansign their versionofTransactionCandbroadcast it to thechain.
If they broadcast an old commitment transaction, the other party can just take all
theirmoneywithin theCSV time. They can also cooperatively create a transaction
that spends the final amounts to both their addresses; this saves time because the
party broadcasting does not need to wait before receiving their funds.
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1.8.2 Other related topics

There are other projects that aim to extend programmability on Bitcoin, some of
which we have taken intuition from [2] [10] [12]. There are also some other solu-
tions which aim to extend the world of decentralized finance on Bitcoin [11]. The
most interesting and relevant of these is SNICKER, which aims to make privacy
protecting coin-join transactions non-interactive [10].
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Chapter 2

The Transformable Discreet Log

Contract

2.1 Introducing the TDLC

One of the biggest disadvantages of DLCs is that, once you are in a contract, you
can’t get out until expiration, unless both parties agree to leave. This is because
you shouldn’t publish one of the CETs without knowing the oracle outcome (oth-
erwise you stand to lose a lot of money if you’re wrong when the oracle publishes
the outcome!). This is very different from traditional finance – if you are in a fu-
tures contract, then you can sell that futures contract to someone else if youwant,
but only if it has not yet reached expiration time.

The TDLC allows the DLC to be partially transferable. In particular, we choose
another party, Carol, whose public key is known beforehand. Carol will be able to
swap into the contract mid-way through, with either Alice or Bob swapping out.
Of course, both the party swapping in and the party swapping out must agree to
this. Note that the party staying in the contract should not care about this swap at
swap time, as the terms of the contract stay exactly the same. However, both Alice
and Bob need to agree to potentially allow Carol to swap in for one of them in the
pre-computation phase (before any transactions are put on chain). Note that if
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Carol ends up swapping into the contract, no further swaps are possible without
interaction between Carol and the party who stays in the contract.

Two other important properties that we maintain is that only the party swap-
ping in and the party swapping out must be online when the swap happens. This
is an important non-interactivity related property because the party who wants
to substitute out of the contract and Carol don’t want to rely on anyone else being
online tomake the substitution. Furthermore, Carol should not need to be online
at the beginningwhile Alice andBob are performing the pre-computation. Again,
this is important because Alice and Bob don’t want to rely on Carol being online
to enter into a contract.

Also, there is a slight downside to our protocol. If Alice ends up swapping out
while Carol ends up swapping in, then Carol must be the one to put the CET on
chain. The one exception to this final property is, in the event that after some
amount of time Carol does not put the CET on chain, Bob will be able to come
back and claim all the funds (though he needs to be present to do so). The rea-
son Carol is required to put the final CET on chain in this case is in order to help
maintain theproperty that onlyAlice andBob shouldneed tobeonlineduring the
pre-computation phase.

2.1.1 Pre-computation

The pre-computation step is very similar to regular Discreet Log contracts. Alice
and Bob sign the same exact transactions between themselves 1-1 1-2. However,
they also have to sign additional transactions that will allow Carol to swap in for
either party later on. Right now, we will assume that there is only one Carol, and
will generalize this to multiple Carols later.

First, Alice will create and sign a single transformation transaction (let’s call it
Transformation Transaction 1) using SIGHASH SINGLE | ANYONECANPAY. The
transaction will look like the following:
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Inputs:

1. Alice and BobMultisig (This is spending the output of the funding transac-
tion 1-1)

Outputs:

1. (Alice and Carol Multisig) OR (Alice and CLTV)

The purpose of this transaction is to allow transferability of the contract be-
tween Alice and Bob to one between Alice and Carol (though importantly note
that an additional CLTV is part of the new script as well!). It’s important to note
that this is not what this transformation transaction will look like on chain; when
Bob is swapping out and Carol is swapping in, they will add some inputs/outputs
tomake this transactionmore complete.

Bobmust create and sign a similar symmetric transformation transaction (let’s
call itTransformationTransaction 2) thatwill potentially allowAlice to swapout.
This transformation transactions looks like the following:

Inputs:

1. Alice and BobMultisig (This is spending the output of the funding transac-
tion 1-1)

Outputs:

1. (Bob and Carol Multisig) OR (Bob and CLTV)

Furthermore, for each possible outcome, Alice will create and sign the follow-
ing additional CET (let’s call it Additional CET 1) in order to allow Carol to poten-
tially close a DLC between Alice and Carol later on:

Inputs:
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1. (AliceandCarolMultisig)OR (AliceandCLTV) (This is spending thefirst out-
put of Transformation Transaction 1)

Outputs:

1. Alice

2. (Carol and Oracle Outcome) OR (Alice and CLTV)

Similarly, for eachpossible outcome, Bobwill create and sign the following ad-
ditional CET in order to allow Carol to potentially close a DLC between Bob and
Carol later on:

Inputs:

1. (Bob and Carol Multisig) OR (Bob and CLTV) (This is spending the first out-
put of Transformation Transaction 2)

Outputs:

1. Bob

2. (Carol and Oracle Outcome) OR (Bob and CLTV)

In less technical terms, our first input in Additional CET 1 is essentially just a
DLC between Alice and Carol (note that it was originally Alice and Bob, and has
now been modified) with an additional CLTV clause. The outputs are just a pay-
out to Alice and a payout to Carol if she can provide the correct oracle signature
(otherwise, Alice can come back and claim all the funds after some time delay!)

This essentially forces Carol to be the one to put the final CET on chain; other-
wise, Alice will be able to come back and claim all the funds after some amount of
time. Carol can always do this since she already has Alice’s signature on the CET.
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Furthermore, the CLTV should be flexible to the point where Carol has enough
time to put the CET on chain after the transformation transaction has been put
on chain.

All of the transactions that Bob signs are given to Alice and all of the transac-
tions that Alice signs are given to Bob. Carol has no steps required fromher in this
pre-computation phase and is not necessarily online to receive any transactions
or signatures. This allows us to maintain the property that Alice/Bob are the only
ones who should be required to be online during precomputation.

Once all of this signing is complete, Alice and Bob can sign the funding trans-
action and put it on chain.

2.1.2 Execution

There are two cases with the execution; either a swap happens or it does not.
If a swap does not happen, then the contract just settles like a regular DLC (i.e.

a CET is put on chain by one of the parties).
If a swap happens, then without loss of generality let’s say Alice swaps out and

Carol swaps in. Then, Alice gives Carol the following: Bob’s signatures on the
transformation transaction and the CETs. Carol knows that she must pay Alice
someamount to swap into the transaction. Theydiscussanddecideonanamount.
Carol then creates the followingmodified Transformation Transaction:

Inputs:

1. Alice and BobMultisig

2. Carol UTXO

Outputs:

1. (Bob and Carol Multisig) OR (Bob and CLTV)

2. Carol Change (She will likely send to her own PKH)
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3. Alice PKH

Essentially, Carol adds inputsandoutputs that include thepayment fromCarol
to Alice. She then signs the transaction (with SIGHASHALL) and sends the signa-
ture to Alice. If Alice would like to proceed, she can sign the transaction and put it
on chain.

Finally, after settlement time, Carol must find the relevant CET for the oracle
outcome and put it on chain, thus settling the contract with Bob. In the event that
Carol puts the wrong CET or takes too long to put a CET, Bob can claim all of the
funds.

It is important to note that cooperation between Bob andCarol is still possible
at the end. If Carol doesn’t want to go through the hassle of finding and putting a
CET on chain, she can just contact Bob and they can mutually agree on and sign
a transaction that sends them both the correct amount of money. This could po-
tentially be advantageous to Bob aswell since the transaction fee for the CETmay
have been higher initially.

2.2 Extension toMultiple Carols

This protocol can be extended with ease tomultiple Carols as well. Alice and Bob
must initially know the public keys of all the Carols that they are planning on po-
tentially involving in the contract. All of the transformation transactions and ad-
ditionalCETs thatwere created foroneCarol in thecasewithoneCarol cannowbe
created independently for each Carol. In the execution step, say that Bob wants
to swap out (and he potentially asks multiple Carols to swap with him). When
Bob and each of the Carols interact, although multiple Carols may sign and send
the signatures to Bob, Bob can only put one on chain as there is only one funding
transaction output. Similarly, the Carols are still able to move their input UTXOs
if they believe that Bob is taking too long putting their transformation transaction
on chain.

36



The downside, however, is that the extension to more Carols does require sig-
nificantly more signatures to be created. Before, with just one Carol, the Big-O
complexity of the number of signatures required was the same as regular DLCs.
However, now the complexity is multiplied by the number of Carols involved, as
we need separate signatures for each Carol. Furthermore, if multiple Carols try to
swap in, then only 1 of them will be successful. Though this could potentially be
a waste of time for Carols who failed to swap in, they did not make any on chain
transactions and thus did not lose anymoney.

2.3 Example

We provide an example of what the on-chain transactions would look like in the
event of a successful swap. First, assume that the funding transaction looks like
the basic DLC funding transaction we’ve shown 1-1.

Say that Bob wants to swap out of the contract and Carol wants to swap in.
Bob and Carol would first interact; Say that Bob and Carol agree that Carol will
pay Bob 0.5 BTC in order to be able to swap into the contract. Bobwould then put
a transformation transaction on chain, which is shown in 2-1.

Figure 2-1: TDLC Transformation Transaction

Finally, say that the oracle publishes a signature. Carol would then be the one
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to find the right CET and put it on chain, as shown in 2-2.

Figure 2-2: Carol’s TDLC Contract Execution Transaction

Carol can simply spend the second output of this to her own PKH assuming
she put the right CET on chain, as she has the oracle signature.

2.4 Security Considerations

2.4.1 State Machine Representation

Figure 2-3: TDLC State Diagram
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This statemachine representation, shown in 2-3, describes exactly what happens
throughout the TDLC process. The first step is essentially initialization, where Al-
ice and Bob meet and decide on all the potential Carols as well as the contracts
that they’ll be betting on. Then, the transactions necessary for the TDLC process
are created. After this, the relevant transactions are signed and sent between Al-
ice and Bob. Alice and Bob will then send these signed transactions to the Car-
ols when they come online as necessary. The funding transaction is then put on
chain. There are then two cases: either the transformation transaction is put on
chain or not. In the latter case, the process proceeds like in a regular DLC. In the
former case, Bob and Carol start interaction and reach agreement to swap Bob
and Carol. Once Carol signs the transformation transaction and sends it to Bob,
there are two possibilities: either Bob signs and puts it on chain or Carol gets tired
of waiting for Bob to do this and decides to spend her input UTXO, thus negating
the entire transaction. If the transformation transaction is put on chain, Bob is
out and it is up to Carol to later put the relevant CET on chain. Alice can no longer
put the CET on chain since she doesn’t have Carol’s signatures on the CETs.

Some of these state machine steps lead to interesting security considerations.
For example:

1. Right after Carol sends her signature to Bob, Bob has some time to decide
whether he really wants to sign and put it on chain. The caveat is that Carol
can move her UTXO at any point in time, so Bob has to be careful with how
long she takes. The interesting point is that there can be a race condition
(called a "swaption") where Bob tries to put the signed transaction on chain
at the same time that Carol tries tomove her UTXO, whichmay lead to both
parties bidding up the transaction fee [3].

2. If there are hundreds of Carols that are allowed to participate in the process,
and they all sign transformation transactions and send them to Bob, Bob
has quite a bit of leverage. He can wait longer to see if the odds are moving
against him; he doesn’t care if a few Carols drop out. In the worst case, this
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can lead to many on chain transactions where Carols decide to move their
input UTXOs because they see that Bob is waiting to see if the odds end up
in his favor.

3. Setting CLTV times is an important question as well. In order to be perfectly
safe, thereneeds tobeenough timebetween thepoint atwhich theoracle re-
leases the outcome and the CLTV time for the CETs (otherwise neither party
can publish a CET without the other person racing to steal the funds). Fur-
thermore, the CLTV on the transformation transaction output needs to be
generous enough for Carol to be able to put a CET on chain afterwards.
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Chapter 3

The Truly Transformable Discreet

Log Contract

3.1 Introducing the TTDLC

TheTruly TransformableDLC is a continuation of the idea described in the Trans-
formable DLC. The assumptions of the TTDLC are the following:

1) The TTDLC assumes that there are N parties who could potentially be in-
volved in thecontract. Furthermore,wewant toallowtheseparties to tradearound
thecontract freely, rather thanallowingatmostoneswapwithout interaction. The
TTDLC transforms are very similar to the TDLC transform, except they can be re-
peated multiple times instead of just once. The parties that end up holding the
contract at the end isn’t relevant; in any case, either of the two parties will be able
to put a transaction on chain and settle.

2) The public keys of all of the N parties need to be known beforehand.

3) We also enforce that only the two parties that are trading the contract be-
tween each other (i.e. one of them is swapping out and the other is swapping in)
need to be present at the time that the swap is made. All of the other N −2 parties
do not need to be online for this, though everyone does need to be online at setup
time.
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Itmakes sensewhy this typeof solutionwouldbemorepractical than theTDLC;
this allows much more liquidity with the contract. Our major goal here is to sim-
ulate cash settled futures contract trading asmuch as possible, except in a decen-
tralizedmanner.

3.2 Signing

Weneed to do some signing initially (just like regularDLCs require us to signCETs
before we put the funding transaction on chain). We have to sign two types of
transactions here:

3.2.1 Transformation Transactions

For thispart,weuseSIGHASH_ANYPREVOUT |ANYONECANPAY |SINGLE to sign
off on the spending condition and amount of the 0th input and the entire 0th out-
put.

For every pairwise distinct, unordered triple of people (i , j ,k), person i must
sign the following CET using SIGHASH_ANYPREVOUT | ANYONECANPAY | SIN-
GLE:

—————————————————————
Input 0 script pubKey (well it’s the script pubKey of the previous output to be

more precise..): (Person i & j multi-sig)
Input 0 amount: Same as funding TX amount
—————————————————————
Output 0 script pubKey: (Person i & kmulti-sig)
Output 0 amount: Same as funding TX amount
—————————————————————
Theoutput that Input 0 is spending fromheremaynot actually exist yet (which

is why we use SIGHASH_ANYPREVOUT!). We are essentially creating this trans-
formation transactionpreemptively so that in the event that there endsupbeing a
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multi-sig between Persons i and j as a result of the contract being handed around,
Person j can substitute out and Person k can substitute in.

The total number of transactions created here isO(N 3) (whereN is the number
of people).

3.2.2 CETs

For every pairwise distinct, unorderedpair of people (i , j )multiplied by every ora-
cleoutcome,person i must sign the following transactionusingSIGHASH_ANYPREVOUT:

—————————————————————

Input 0 script pubKey: (Person i & j multi-sig)

Input 0 amount: Same as funding TX amount

—————————————————————

Output 0: Pay to Person i’s PKH (amount based on oracle outcome)

—————————————————————

Output 1: Pay to (Person j + Oracle) || (Person i &OP_CLTV) (amount based on
oracle outcome)

—————————————————————

Note that all signatures can bemade public to everyone.

The total number of transactions created here isO(N 2 ·O) (whereN is the num-
ber of people andO is the number of outcomes).

3.3 Put Funding TX on chain

The next step is to create a single initial DLC funding transaction between two
arbitrary parties (WLOG let’s say Persons 0 and 1) and put it on chain.
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3.4 Creating Transformation Transactions

Let’s say Persons i and j are currently in the contract (which implies a Funding
UTXO between two exists at the moment). Let’s say that person j wants to swap
out andperson k wants to swap in; in this case, both person j and k need to be on-
line and interact, but person i does not need to be there. Person j and k will con-
struct the following transaction by adding inputs and outputs to the base Trans-
formation Transaction:

—————————————————————

Input 0 script pubKey: (Person i & j multi-sig)

Input 0 amount: Same as funding TX amount

—————————————————————

Input 1: Any UTXO spendable by Person k

—————————————————————

Output 0 script pubKey: (Person i & kmulti-sig)

Output 0 amount: Same as funding TX amount

—————————————————————

Output 1: Some agreed upon amount is sent to Person j ’s PKH.

—————————————————————

Person k will then insert in Person i ’s relevant Transformation Transaction sig-
nature (during the signing phase, Person i already created and published this sig-
nature) and sign themselves. Theywill then send the signed transaction to Person
j , who can then sign and send the transaction into themempool.

Any number of these transformation transactions can be put on chain, one af-
ter another. As a result, ownership of the contract can constantly change. Note
that transformation transactions signatures cannot be reused since the TXID of
the UTXO that is being passed around is constantly changing. However, it is pos-
sible for the samepair ofparties tohold thecontract atmultiplepoints throughout
the process.
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3.5 Final CET

Once the oracle publishes an outcome, a CET can be put on chain by either party.
WLOG assume that persons i and j are currently in the contract. Let’s say that
person j wants to be the one to publish the final settlement transaction. Person j
will create and sign the following transaction:

—————————————————————

Input 0 script pubKey: (Person i & j multi-sig)

Input 0 amount: Same as funding TX amount

—————————————————————

Output 0: Pay to Person i’s PKH (amount based on oracle outcome)

Output 1: Pay to (Person j + Oracle) || (Person i &OP_CLTV) (amount based on
oracle outcome)

—————————————————————

They will use Person i’s signature which already exists from the signing phase
to complete the transaction. They will then send this to the mempool and the
contract will be settled.

3.6 Example

Let’s take a look at an example of an on-chain view of the transactions that go into
making swaps with the TTDLC.

First off, let’s assume that the funding transactions looks like 3-1.
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Figure 3-1: TTDLC Funding transaction

Let’s say that Person 1 wants to be swapped out and replaced with Person 2.
Also, Person 1 and Person 2 interact and agree that Person 2 should transfer 0.5
BTC toPerson1 inorder for Person2 to takePerson1’s place in the contract. When
put on chain, the transformation transaction would look like 3-2.

Figure 3-2: TTDLC Transformation transaction

Say that we reach expiration time and there are nomore swaps. Either person
0 or person 2 can settle the contract. Let’s say that Person 0 ends up settling the
contract. The final CET would look like 3-3.
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Figure 3-3: TTDLC CET

Presuming Person 0 put the correct CETon chain, Person 0 can then spend the
second output using the correct oracle signature.

3.7 Security Considerations

There exist at least two interesting security considerations:
1. Say Person i and j are currently in the contract, and k wants to swap in for

j. Person k signs a transformation transaction and sends it to j. Person j can now
wait a while before they send the transaction into the mempool (to see if it is ad-
vantageous to do so). Person k has the option to respond to this by spending the
UTXO they are using as an input, but it could become some type of race if they try
to do this simultaneously. These races do not break correctness, but rather just
make it unclear where k will get into the contract or not.

2. Say the oracle has already published a signature and the person who stayed
in the contract at expiration and lost wants to be a sore loser. They can keep send-
ing transformation transactions to prevent a CET from being put on chain. The
party who lost can constantly observe the mempool and send a transformation
transaction with a higher transaction fee than the party who is trying to settle.
The deterrent here is that they have to do this every single block and they lose
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the transaction fee, which adds up to pretty significant sums of money. One at-
tack is for the sore loser to continue doing this until the CLTV on the CETs expire.
In order to combat this, we can either make sure to put the CLTV far enough into
the future to the point where this attack is always unprofitable or we can use CSV,
which is a relative time lock and thus not susceptible to this attack, in the output
script of the CET instead of CLTV, which is an absolute time lock.

3.8 Practical Use Cases

Right now,DLCs are rarely used onBitcoin, though there are companies aiming to
implement software and specifications to use them [15]. One of the reasonsDLCs
are currently rarelyusedmightbebecause transferrability isnot reallypresent; the
fact that the twoparties at the beginning are forced to stay in the contract until the
end unless both of them agree to leave is not particularly appealing. In fact, most
proficient futures contract traders on centralized exchanges (which is what we’re
attempting to simulate to an extent, except wewant the process to be entirely de-
centralized) generally aim to buy the contract low and sell it off at a higher price
later on, before expiration. In simpler terms, waiting until expiration is generally
not something that top traders do. The TTDLC will, therefore, enable DeFi appli-
cations on Bitcoin where a group of N traders can buy and sell the "futures con-
tract" (really a DLC) as they please. This innovation will perhaps shift some favor
towards Bitcoin in the DeFi landscape, as other blockchains, such as Ethereum,
Avalanche, Solana, etc. are considered to be much stronger for DeFi at the mo-
ment.

The TTDLC is also useful as a theoretical result; we hope that our work will
inspire others to innovate in the DLC space either by improving our research or
coming up with a completely new idea. Any progress we make will improve the
usability of Bitcoin and other UTXO models, which are key to maintaining high
levels of decentralization and privacy on chain.
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Chapter 4

Evaluation

4.0.1 TDLC Transaction Size Approximations

If we assume only one Carol, we’re still only creating O(o) signatures. However, if
we assume that there are C carols, we need to create O(C ∗ o) signatures overall,
which can be quite large. For example, if there are 100000 Carols and 100000 out-
comes, the pre-computation phase would require 1010 signatures, which is much
too large.

For each of these transactions, we only require signatures, each of which is 64
bytes. Therefore, the total size in bytes would be around 640 ·109, which is 640 GB.
This is not impossible to store, but very large.

4.0.2 TTDLC Transaction Size Approximations

With the regular DLC and the TDLC, the number of transactions that need to be
created and signed is quite low (on the order of O(o), where o is the number of
outcomes. For the TDLC, this becomes O(C ∗ o) if we assume multiple Carols).
The TTDLC, because it allows for a much stronger use case, require many more
signatures to be created. In particular, we must createO(N 2 ·o +N 3) signatures in
total; this suggests that N > 2000 will be extremely difficult (and even N > 1000 is
quite difficult). In terms of size in bytes, 20003 = 8 ·109 signatures. Each signature
is 64 bytes, so this translates to 512 GB, which is huge. Therefore, to some extent,
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the algorithm assumes that the quantity N 2 ·o +N 3 is low enough for the process
to be practical. The time to compute these signatures would also pose a hurdle.
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Chapter 5

Conclusion

5.0.1 FutureWork

It was noted that even TTDLCs require the full amount of capital to be committed
by both participants beforehand. Interesting future work would be to allow some
kindof leveraged tradingonBitcoin; essentiallybothparticipantswouldonlyhave
to commit to some percentage of the maximum amount of capital and could be
liquidated if the price moves against them enough.

Furthermore, throughout this thesis, we have only described the TDLC and
TTDLC using Segwit V0. Both of these protocols would perhaps be better imple-
mented with Taproot, Adaptor Signatures, or Segwit V1; this could be a point of
future work [13] [14].

5.0.2 Recap

In this thesis, we discussed the Transformable Discreet Log Contract (TDLC) as
well as the Truly Transformable Discreet Log Contract (TTDLC), both of which
assist with DLC transferability. The core idea behind the former is to allow po-
tentially multiple Carols to substitute into a DLC between Alice and Bob, though
the public keys of all potential Carols must be known beforehand. At most one
of these Carols can then swap in for either Alice or Bobmidway through the con-
tract. Only the Carol swapping in and the party swapping out need to be present

51



to make the substitution. The Carol swapping in can then put a CET on chain to
close the contract. The TTDLC is much stronger; it allows for many parties to es-
sentially arbitrarily trade around a contract as long as the party swapping out and
the party swapping are present to make the substitution. However, the TTDLC
requires a potentially much larger setup phase.

Wehope thatourworkwill improveDLCtransferabilityandgeneralprogramma-
bility on Bitcoin going forward.
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