
The Lightning Network Cross-Chain Exchange: A Decentralized
Approach for Peer to Peer Exchange Across Blockchains

by

Jesús Andrés Mathus Garza

B.S. Computer Science
Massachusetts Institute of Technology, 2017

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE IN FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN COMPUTER SCIENCE
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2018

c©2018 Jesús Andrés Mathus Garza. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in

part in any medium now known or hereafter created.

Author:

Department of Electrical Engineering and Computer Science
June 8, 2018

Certified by:

Thaddeus Dryja
MIT Digital Currency Initiative Research Scientist

Thesis Supervisor

Certified by:

Jonathan Ramsay Key
Charles Stark Draper Laboratory

Thesis Supervisor

Accepted by:

Katrina LaCurts
Chairman, Department Committee for Graduate Students

1

This page intentionally left blank.

2

The Lightning Network Cross-Chain Exchange: A Decentralized
Approach for Peer to Peer Exchange Across Blockchains

by

Jesús Andrés Mathus Garza

Submitted to the Department of Electrical Engineering and Computer
Science on May 25, 2018 in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Computer Science

Abstract

The development of decentralized blockchain-based systems has un-
locked opportunity in untrusted systems. As more blockchains were cre-
ated, however, a lack of interoperability became apparent. In response,
centralized exchanges facilitating transactions across different blockchains
emerged, reintroducing trusted third parties that blockchains were in part
created to eliminate. Although blockchain capabilities were promising,
their emergence resulted in embezzlement, hacks, and scandals that re-
sulted in significant financial losses. A program allowing for peer to peer
cross-chain exchanges would reestablish the decentralized foundation upon
which blockchains were built and eliminate the risks associated with cen-
tralized exchanges. In this work we extend Lightning Network capabilities
and develop a protocol enabling secure peer to peer channels to safely
transact across blockchains. The system connects individuals using the
Lightning Network’s channel creation functions, and introduces four new
channel commands: Price, Compare, Exchange, and Respond. Together,
they integrate hashed timelock contracts that introduce peer to peer nego-
tiations and exchange functionality from one blockchain to another. With
this functionality in place, individuals gain more control over their own
assets and rely less on third parties, reaffirming decentralization through-
out the blockchain ecosystem and laying a new foundation for distributed
systems to interact with less friction.

Thesis Supervisor: Thaddeus Dryja
Title: MIT Digital Currency Initiative Research Scientist

Thesis Supervisor: Jonathan Ramsay Key
Title: Draper Cloud Architecture Group Leader

3

This page intentionally left blank.

4

Acknowledgements

I would like to thank Tadge Dryja and Ramsay Key, my thesis supervi-
sors, for their continuous help and guidance throughout this project. Each
of you provided tremendous support and I truly appreciate the time and
effort you contributed.

5

This page intentionally left blank.

6

Table of Contents

1 Introduction 11
1.1 Background . 11

1.1.1 Blockchain . 12
1.1.2 Cryptocurrencies . 15
1.1.3 Currency Exchanges 17
1.1.4 The Foundation: Lightning Network 18

2 Related Work 24

3 The Problem 27
3.1 Centralization Defeats the Purpose of Blockchains 27
3.2 Lack of Non-Currency Cross-Chain Connectivity 28
3.3 Centralized Exchange Vulnerabilities 29

4 The Solution 31
4.1 Hashed Timelock Contracts 32

5 System Overview 37
5.1 Price Command . 37
5.2 Compare Command . 37
5.3 Exchange Command . 38
5.4 Respond Command . 40

5.4.1 HTLC Creation . 41
5.4.2 HTLC Assignment 43
5.4.3 HTLC Unlocking . 45

5.5 User Interface . 47

6 Discussion and Future Work 49
6.1 Future Work . 49

6.1.1 Fault Tolerance . 49
6.1.2 HTLC Revocation 50
6.1.3 Non-Currency Chain Communication Protocol 51
6.1.4 Improve User Interface 52
6.1.5 Channel Hopping Functionality 52

6.2 Real World Applications . 53
6.2.1 Delivery vs. Payment 53
6.2.2 Currency Exchange 55

7 Conclusion 57

8 Bibliography 59

9 Appendix 63

7

This page intentionally left blank.

8

List of Figures

1 Blockchain representation. 12
2 An example of a miner hashing a block. 14
3 Lightning Network channel life cycle. 19
4 Lightning Network Push command message exchange visu-

alization. 21
5 Lightning Network exchange where both Bobs represent the

same person, exchanging differenct currencies with Alice. . . 31
6 Our HTLC Golang struct representation. 33
8 Exchange Respond command example where Bob decides to

accept the exchange. 40
9 HTLC creation process for independent and dependent ver-

sions. Takes place on the acceptor’s machine. 42
10 Depiction of the message exchanges that make up the cross-

chain exchange procedure. The figure does not take into
account any errors that could occur during the exchange
process. 43

11 HTLC assignment and unlocking process. 45
12 Visual representation of connected channels with hopping

functionality. 53

9

This page intentionally left blank.

10

1 Introduction

With the world progressing towards an ever more digitized state, it is no

surprise that our currencies have followed suit. The transition that banks

made from a purely cash based system into an electronic banking system

through the use of credit cards served as a stepping stone limited only by

the ability to fully secure an online currency system. Satoshi Nakamoto’s

innovative development of Bitcoin[18], the first blockchain based cryptocur-

rency, granted society the ability to shed the need for trusted third parties

and decentralize the financial system. Moreover, Nakamoto’s contribution

serves as another step forward into the full potential of distributed systems.

Although Nakamoto’s initial application was financial, the technology that

Nakamoto created has already been extrapolated into many other sectors,

such as data management, security, supply chain management, and more.

Like most other widespread technologies, blockchains need to develop an

interoperability protocol to fully leverage the untapped strength of the

broader blockchain network. To further develop this decentralized network,

we will construct a system for peer to peer cross-chain transactions.

1.1 Background

Our work builds on the foundation of blockchains, cryptocurrencies,

currency exchanges, and blockchain scalability (in particular the Lightning

Network) set up. These building blocks have expanded possibilities in fields

such as international trade[20] and distributed systems[16], and could have

greater impact if implemented together.

11

1.1.1 Blockchain

We define a blockchain as a decentralized ledger comprised of token cre-

ation and state changes. A token is each blockchain’s operational unit, used

to transact and interact on the network, and a state refers to the present

standing of all users on the network based on the documented network his-

tory. A complete copy of this digital representation is distributed across

all nodes, or devices belonging to the blockchain network. Although this

generalized high level structure applies to most blockchains, the specific

implementation details differ from blockchain to blockchain, mostly in the

way that each blockchain network reaches correct current state agreement.

Figure 1: Blockchain representation.

For example, the Bitcoin blockchain utilizes a proof of work scheme for

its transactions confirmation. Proof of work is a method that leverages

the computing power of users to update the Bitcoin network, cataloging

new transactions and effectively reaching new state agreement across the

network.. It begins when a token is transferred from one user to another.

That specific transaction is communicated to the broader network as an

unconfirmed transaction, meaning that users must confirm the transaction

12

to append it onto the blockchain as a permanently accepted block. As seen

in Figure 1, blocks are made up of multiple transactions, and are collected

in a queue until they are confirmed and appended to the blockchain. Users

that work to process any and all transactions are referred to as miners.

Miners dedicate their computing power to hashing1 a value in unconfirmed

blocks known as the nonce2. When a miner calculates a hash with a value

that is less than a network wide constant, which the system adjusts every

2016 blocks (as defined by the network based on the network wide confir-

mation rate of about 10 minutes), the miner’s block is appended to the

blockchain, the block is broadcast to all nodes on the network, and other

miners can now start building on this new block (as shown in Figure 2).

To append to the decentralized network, the miner sends other nodes a

confirmation signal, notifying them of the new block, and the network uses

a gossip-like communication protocol to distribute the message throughout

the network. However, if the miner produces a hash that is not less than

the universal constant, the miner will continue changing the nonce, hash

the new nonce value, and iterate until they fulfill the value requirement[18].

Every block also has a blockheader, containing metadata about that

block. Block headers are not sent across the network, but are instead com-

puted by each node in order to validate the block’s contents. One of the

metadata fields is the previous block’s hash. Because nodes calculate the

previous block’s hash for themselves, and because hash values are depen-

dent on the input’s exact contents, an adversary cannot swap an existing

1Hashing refers to the one way mathematical transformation of data from its original
form into a new fixed length hash value. The function makes the hash value easy
to compute given the original form, but makes the original form nearly impossible to
compute given the hash value. Hashing is usually used for security purposes, but in this
case is only used as a complexity device to ensure the proof of work scheme is upheld.

2The nonce is a system generated random value that exists as a field in each block.
Miners edit the nonce value to change the hash of the block, and to continue mining.

13

Figure 2: An example of a miner hashing a block.

block with their own. If an adversary tried to do so, the corresponding

hashes on all blocks that come after the adversary’s swapped block would

not match the hash created from the new malicious block.

Iterating over this transaction confirmation scheme will result in the

creation of a blockchain, which stores the history of transactions for a

token as long as a single node exists in its network.

With decentralization at its core, blockchains thrive as user driven en-

tities that solve some of the challenges of centralization: security, privacy,

and government mismanagement. Blockchains avoid the security risks that

centralization implicitly holds, as adversaries have no central system to

target. If an adversaries targets one node, or even hundreds of nodes, the

broader system can remain resilient and unaffected. Miners themselves ver-

ify the accuracy of the chain they are mining, and can choose to ignore any

chain that has been maliciously affected. This serves as a valuable fault

tolerance mechanism that helps provide system integrity. Blockchains also

provide a high level of privacy. User wallets and transactions are only rec-

ognizable through their obscure number identifiers, which hold little to no

connection to any real world identifiers. Even if an adversary tracked user

activity and recognized a user’s activity pattern, they would have no way

to prove that the network activity belongs to the real world user. The

14

technology is also independent of the government or any governing body,

which prevents any government mismanagement (at least as long as the

government does not target the users themselves) and censorship from lim-

iting the technology’s capabilities. These qualities have helped blockchains,

and their cryptocurrency tokens, thrive over the past few years, and leaves

many hoping that they will develop further and potentially replace some

of our current financial and technological systems.

1.1.2 Cryptocurrencies

A cryptocurrency, as implemented on a blockchain, is a unit that can

be traded from peer to peer and draws value directly from consumer de-

mand, which in turn stems mostly from the novelty of implementation or

functional capabilities. Each token can have different use cases because

of the different ways that the underlying blockchain technology can be

implemented. For example, Bitcoin has dominated cryptocurrencies as a

financial tool[18], but Ethereum has added functionality that better suits

it for the creation of smart contracts3 and blockchain based applications[4].

In addition, cryptocurrencies are novel in that they establish a system

where every user gains tangible benefit from expanding the overall user

base. As more users join the network, the value of the network increases,

deriving its value solely from supply and demand. This encourages partici-

pants to grow the network. However, network growth produces other issues

that results in one of the most important challenges cryptocurrencies face

at the moment: scalability.

The number of Bitcoin transactions has increased dramatically over the

past few years, going from around 100,000 per day in early 2015 to a peak of

3Smart contracts on the Ethereum blockchain are user uploaded code that serves to
digitally enforce user defined agreements.

15

over 400,000 per day at the end of 2017[6]. As the user base expands, miners

receive more transactions to process. However, the average confirmation

time remains constant at about 10 minutes for Bitcoin, making it harder for

miners to confirm transactions promptly. Users have adjusted the system

architecture to increase the maximum number of transactions allowed in a

block, but cannot increase it infinitely. The block size must remain within

a reasonable size to allow users to easily download, process, and store all

transactions. Although changing the system’s block size helps, for Bitcoin

or other cryptocurrencies to be able to handle a number of transactions at

a mainstream scale, more has to be done.

Similarly, the observed Bitcoin transaction fees have increased, going

from pennies at then end of 2016, to a peak of over $50 at the end of 2017[5].

With the increase in transaction volumes, users have made use of Bitcoin’s

transaction fee mechanism. Anyone initiating a transaction can also add a

fee for miners. The mechanism exists so that the network can continue to

function once the maximum Bitcoin cap is reached (as programmed into

the system), but users have begun including fees to incentivize miners to

prioritize their transactions amidst higher transaction volumes. Miners

then naturally prioritize the transactions they include in their blocks based

on the fee per byte ratio of each transaction. With that being said though,

transaction fees did drop back down to a few dollars[5], but the volatility is

still something that needs to be considered for Bitcoin and cryptocurrencies

in general.

With increased transaction volumes and strong fee volatility, the pos-

sibility of mircrotransactions4 on the Bitcoin network has been reduced.

For example, if you go to Starbucks to buy your morning coffee, you would

4Transactions involving small quantities of money or value.

16

never choose to use Bitcoin over, say, a credit card, if Bitcoin requires

you to pay a $5 fee at some point when your coffee costs $4.50. Many

believed that Bitcoin would remain usable for microtransactions, but the

issues of scalability and increasing transaction fees has become a contested

and controversial issue that the Bitcoin system must work through.

1.1.3 Currency Exchanges

The currency exchange market, otherwise known as the foreign ex-

change market, is the world’s largest market trading over $2 trillion worth

of value daily[21]. From its inception, the foreign exchange market broke

down barriers to entry between distinct markets and allowed for the global

market to expand and take proper form. Efficient international trading

and global monetary policy developed, adding value for nations, organiza-

tions, and even individuals participating in the global economy[15]. One

can think of exchanging currencies as gaining the ability to tap into the

specialties that other economic entities possess.

For example, Saudi Arabia and China have a strong exchange of imports

and exports based on each of their specialties and needs[9]. Saudi Arabia

invested billions of dollars in securing itself as China’s primary source of

petroleum, having a strong production; likewise, China symbiotically in-

vested billions in exporting metals for Saudi Arabia[17]. Both invest in

each other because they had unique specialties that would cost more to

reproduce than to tap into through exchange.

Currency exchange makes possible the efficient exchange of goods and

services across different economical structures. Imagining a world where

blockchain extends to applications and targeted use cases, the inter oper-

ation between large-chains and small-chains with specialized capabilities

17

could serve to eliminate friction from the blockchain ecosystem and unlock

value that will benefit all users. Hypothetically, if Bitcoin becomes the

most stable and reliable cryptocurrency, and Ethereum becomes a widely

used app development platform, exchanging one for the other could promise

more financial security or allow an individual to participate in some useful

application. The impact exchanges have had on countries is on a com-

pletely different scale, but the blockchain field is young and growing, and

the full impact that efficient exchange could have on the blockchain field

could grow as well.

1.1.4 The Foundation: Lightning Network

The Lightning Network aims to solve Bitcoin’s scalability limitations.

It is a system of micropayment channels that allow trusted off-chain5 trans-

actions using a contract/timelock system[24]. Instead of overwhelming

blockchains with every single transaction made, users would only broadcast

two transactions per created channel: a funding transactoin and a closing

transaction. This channel life cycle can be seen in Figure 3 below. The

funding transaction represents the creation of a Lightning Network chan-

nel, broadcasting to the blockchain that a user is taking out 8 BTC and

putting them into a channel. There, that user and their peer can transfer

tokens with each other continuously without touching the main blockchain.

Once they finish transacting, they broadcast a closing transaction on the

blockchain, which places their new token amounts back into their main

blockchain balances. All users can create these channels with one another

and are able to transact virtually without limit and with minimal trans-

5Blockchain transactions that occur off of the blockchain, meaning they are not com-
municated to the network when they are executed. This implies that there is some trust
mechanism in place that ensures that when they are communicated to the blockchain,
their integrity can still be guaranteed.

18

action fees (only the fees from the funding and closing transactions, and

from transactions using channel hopping, as covered in Section 6.1.5).

Figure 3: Lightning Network channel life cycle.

State oriented channels are the main tool the network utilizes to repli-

cate blockchain’s state defined system, accurately and securely tracking

validated events over time. To create one of these channels, two users must

first connect with each other. Lets say that Alice and Bob are friends that

want to transact on a Lightning Network channel.

Alice and Bob first establish and authenticated data connection. Once

the two peers are connected, they can form a transaction channel and finally

exchange tokens.

Upon creation, the channel establishes a starting state. The state serves

as a safety net, guaranteeing each channel member the ability to close the

channel and claim their current balance at any time. In the channel creation

process, the Alice’s node sends a message to Bob’s node to corroborate the

existence of the channel between them, and corroborate the value that Alice

has pledged to deposit in the channel. Bob’s node will sign off on the state

19

proposal, and once both users agree and sign off, the state will be officially

updated and the integrity of the system will be maintained. All future

transactions within the channel involve a state change agreement process,

state signing process, and exchange of private keys to update the channel’s

state[24].

When a state is updated, the previous state must be revoked to prevent

Bob, for example, from broadcasting an old state where he had more tokens,

even though he has spent some tokens since. To revoke an old state, both

participants send a message to each other with a private key for that specific

state. With this private key, a user can prove that both parties aggreed to

revoke that old state. So if a malicious participant attempts to broadcast

the old and revoked state, the cooperative participant can use the malicious

participant’s private key for that revoked state to nullify their broadcast,

and penalize them, taking all of their channel tokens.

As mentioned above, the Lightning Network nodes use messages to

transfer information from commands. We can see how the message protocol

works in our Lightning Network implementation’s Push command.

The Push command achieves a state change sending tokens from the

command caller to their peer using three messages: a DeltaSig message,

a SigRev message, and a Rev message. The DeltaSig message transfers

a delta and a signature from the Push command initiator. The initiator

is sending tokens, and communicates that through a delta, or amount be-

ing sent (negative for the initiator and positive for the receiver), and a

new signed state reflecting the balance differences. The SigRev message

involves the receiver endorsing and singing the initiators proposed state

and revoking the previous state. Lastly, the Rev message has the initiator

revoke the previous state as well, convincing the receiver that the transfer

20

Figure 4: Lightning Network Push command message exchange visualiza-
tion.

is complete, and achieving agreement on the new channel state.

For example, if Alice and Bob have a channel where they have 8 BTC

and 2 BTC respectively, and Alice would like to pay Bob for buying lunch

earlier in the day, she might Push 100,000 Satoshi (or 0.001 BTC). Al-

ice inputs this to her machine, and her machine builds a transaction with

the updated channel values (meaning she officially declares the outputs

and inputs, being -100,000 Satoshi for her and 100,000 Satoshi for Bob

respectively), signs the proposed transaction representing the new state,

and sends a DeltaSig message to Bob. The message contains the transfer

information (a delta of 100,000 for Bob, and the new state signed by Al-

ice) in byte representation, as seen on Figure 4. Bob’s machine receives

21

and interprets the message, performing the same update steps with the

given delta. His machine updates channel values, signs the same proposed

transaction, and revokes the previous state. This revocation is what we

mentioned earlier, where Alice receives a private key from Bob, which she

can use to claim all the money from the transaction’s outputs if Bob does

publish that specific revoked state. Bob sends the private key and the new

signed state in a SigRev message to Alice. With the private key, Alice

knows that Bob’s previous state is revoked, and she sends the last message

in the process, the Rev message, providing him with a private key so that

he can consider Alice’s previous state revoked as well[24]. After all of this,

Alice will now have 7.999 Bitcoin, and Bob will have 2.001.

Once Alice and Bob agree that they want to conclude interactions on

their channel, they call the Close command and terminate the channel co-

operatively, allowing both users to use their tokens immediately. However,

if either Alice or Bob wishes to close the channel, but does not want to

wait for the other’s cooperation, they can call the Break command, forcing

the channel closer to wait some period of time before being able to use the

money returned from the channel. The other user, however, will still be

able to use their money immediately. The Break command ensures user au-

tonomy in case one user becomes unresponsive or uncooperative, allowing

the other user to close the channel anyway[24].

In Section 5 we use the Lightning Network’s secure, user-generated plat-

form to develop decentralized capabilities for cross-chain transactions.

22

This page intentionally left blank.

23

2 Related Work

Although blockchain technology is still in its infancy, its rise in pop-

ularity academically, professionally, and across social groups has pushed

developers to keep moving the field forward at a rapid pace. With that

in mind, most developers knew that they would have to be first to mar-

ket if they hoped to lead the field in any particular endeavor. This has

streamlined the development of new systems within the broader field of

blockchain, but the rush brings with it implementations with a narrower

range of application. Atomic swaps6 serve as an example as early develop-

ment only applied to a handful of cryptocurrencies, but has seen significant

step by step progress recently.

On September 19, 2017, the Decred Project sucessfully conducted the

first on-chain atomic swap between Decred and Litecoin. This was a very

powerful step forward in the cryptocurrency community as the team proved

that exchanging different cryptocurrencies without a trusted third party

was possible, but there was still work to be done as their implementation

fell under limiting specifications. Their open-source code now encouraged

developers to refine the approach and create more implementations that

could one day transact across blockchains more universally[26].

Shortly after, on October 7, 2017, Altcoin.io did just that, and man-

aged to complete the first atomic swap between ethereum and bitcoin, two

tokens on different blockchains[11]. This achievement marked another step

forward in decentralizing cross-chain transactions, but the process was still

on-chain, meaning that any swap would incur mining and congestion in the

system, especially at scale. The blockchain ecosystem has to find a way to

6A method for peer-to-peer exchange of different cryptocurrencies without the need
for a trusted third party

24

scale if it is ever going to fulfill financial needs worldwide, which amount

to over $2 trillion in currency exchanged per day[22]. The answer to the

issue of scaling: the Lightning Network.

Lastly, on November 16, 2017, Lightning Labs (a company working

on another Lightning Network implementation named LND) successfully

swapped coins across the Bitcoin and Litecoin networks[25]. At this point

there are multiple Lightning Network implementations, and each has branched

off in development, pursuing unique goals and system designs. Our team is

the Massachusetts Institute of Technology Digital Currency Initiative, and

we are working on a particular Lightning Network implementation named

lit.

As all of these implementations have built off of each other, we too look

to push the field forward using the inspiration of those that have pushed

us this far up until now. Our implementation is another independent effort

to expand blockchain capabilities and contribute to its future.

25

This page intentionally left blank.

26

3 The Problem

The core problem we want to address is decentralized cross-chain in-

teractions at scale. All prior approaches to scaling cross-chain interactions

involve a centralized exchange. Crypto to crypto exchanges7 have been es-

tablished to fulfill cross-chain transaction needs, but add unnecessary risk

to the blockchain ecosystem. They centralize the ecosystem through to-

ken custody, they exist solely as financial tools, and they have a history of

being exploited. Fundamentally, blockchain exchanges undermine the very

purpose for which blockchain technology was initially created: to eliminate

superfluous third parties[18].

3.1 Centralization Defeats the Purpose of Blockchains

Satoshi Nakamoto states that the reason he or she created blockchain

technology is for the purpose of eliminating third party institutions’ in-

volvement in financial transactions[18]. Nakamoto developed this system

to empower individuals, preventing these third parties from reaping the

benefits of establishing trust. The mechanism that blockchains use to ac-

complish this stems from consensus through decentralization.

Other than the advantage of enabling global digital payment systems,

decentralization as a concept adds important value to existing infrastruc-

tures. Smart contract development extends transaction capabilities past

mere currency exchange to the verifiable exchange of ownership over any

product, good, or service[4]. This advanced capability results in the reduc-

tion of lawyers or similar third party systems required to verify any type of

legal action individuals or organization take, showing promising impact[2].

7Exchanges that trade one cryptocurrency for another cryptocurrency.

27

Blockchain’s decentralization also gives rise to a new type of distributed

database. As explained earlier, blockchains’ system design propagates all

data input on the system to each one of its nodes. As distributed databases,

blockchains provide positive security capabilities (as described in Section

1.1.1). Their system architecture allows individuals and organizations to

effectively distribute data across thousands of endpoints and count on the

system’s resilience. For example, Follow My Vote is an organization de-

veloping secure blockchain voting protocols to collect and publicize voting

data for a transparent and corruption free voting system[7].

Established exchanges centralize a decentralized system, reintroducing

the limitations and problems that blockchains solve and limiting the po-

tential they offer.

3.2 Lack of Non-Currency Cross-Chain Connectivity

As a disruptive technology, blockchain’s purpose has been extrapolated

beyond currency exchange. Industries extended blockchain to fields such as

supply chain management[14], health care[3], and more as developers find

more ways to innovate using this new technology. Ethereum, for example,

has cultivated a strong environment for non-monetary blockchain applica-

tions[10]. Expanding past the singular purpose of currency management,

blockchains will demand a communication protocol that operates without

financial backing. When the Bitcoin and Ethereum blockchains interact,

there is a transfer of monetary value from one chain to the other, but when

supply chain management blockchains interact, there should be a way for

those blockchains to transact and exchange their value.

Cryptocurrency exchanges are built to transfer value between monetary

blockchains, but have no infrastructure to accommodate transferring infor-

28

mation from one chain to another. Inherently, this lack of connectivity is

not an issue, but cross-chain communication should be established to push

the blockchain environment forward and improve the broader blockchain

network. Compare the impact of a single website to that of the network

of inter-connected websites; the first is limited in reach and scope, but the

latter redefined the way we do business, how we communicate, and even

our day to day lives. Lack of non-currency cross-chain connectivity may

not be a problem for cryptocurrency exchanges, but it is a path that could

expand the future of blockchain technology.

3.3 Centralized Exchange Vulnerabilities

A more tangible risk factor is the inherent vulnerability of centralized

exchanges. With a single system and single party managing up to millions

of dollars, blockchains’ cryptographic and decentralized security environ-

ment gets simplified down to the unregulated cybersecurity capabilities of

said trusted party. In addition, the untraceability of public key identifica-

tion on any blockchain network allows for real world identification obscu-

rity. With this in mind, some exchange managers simply embezzled all the

money entrusted to them.

The prime example for all of the above being Cryptsy. Cryptsy was a

popular alternative cryptocurrency exchange in 2014 and early 2015. Run

by Paul Vernon, the exchange went through months of issues that even-

tually resulted in the firm’s collapse. It was later discovered that Vernon

embezzled millions of dollars amid all of the issues leading up to the firm’s

collapse and that he destroyed evidence of his illegal actions[13].

29

This page intentionally left blank.

30

4 The Solution

Our proposed solution is a decentralized cross-chain communication

protocol that allows peer-to-peer off-chain transactions leveraging the Light-

ning Network. Although we aim to eliminate all third parties, including

exchanges, we acknowledge that atomic swaps are more limited, dealing

only with trade execution, not matching or discovery. However, the pro-

tocol combats centralization efforts along with the vulnerabilities that ac-

company them, and simultaneously establish a foundation for chains to

communicate with other chains.

Figure 5: Lightning Network exchange where both Bobs represent the same
person, exchanging differenct currencies with Alice.

As seen in Figure 5 above, the current exchange process would focus

on a two channel peer to peer scenario where Bob wants to send Alice one

type of token in exchange for a different token, with each belonging to a

separate blockchain.

The program builds off of Lightning Network infrastructure, focusing

on peer-to-peer transactions through user created channels. Nodes in the

31

network create channels connecting to other individuals on the network.

From a channel’s inception, each node determines an amount of blockchain

value to set aside for the channel’s duration. That total amount cannot be

changed once the channel is created, but can be transferred between the

two nodes indefinitely as long as the channel exists. Our newly developed

program sets up the ability to transact across different blockchains, en-

abling users to trade Litecoin for Bitcoin and any other blockchain tokens

that are made system compatible.

Finally, the program’s distributed service minimizes the risk associated

with vulnerable centralized exchanges using secure cryptographic checks

and balances. Our program makes this possible through the implemen-

tation of hashed timelock contracts (HTLCs) across Lightning Network

channels.

4.1 Hashed Timelock Contracts

If Alice and Bob have a Lightning Network channel open with Bitcoin,

and have another channel open with Litecoin, and Alice wants to exchange

0.1 Bitcoin for 10 of Bob’s Litecoins, they might find themselves in a stale-

mate. Even if Alice and Bob both agree on the exchange amounts, whoever

sends their amount first has no way of guaranteeing that the other party

will honor their agreement afterwards. If Bob were a malicious party, he

could simply wait to receive Alice’s 0.1 Bitcoin payment and never send her

his 10 Litecoins. To fix this uncertainty, we implemented hashed timelock

contracts.

HTLCs are vault mechanisms that uphold unilateral global state changes

across multiple nodes using hashed secrets to unlock stored funds[24]. A

secret, or preimage, is a randomly generated 20 byte array, which we hash

32

Figure 6: Our HTLC Golang struct representation.

to produce what we call an RHash, or the preimage’s corresponding 20 byte

hashed array. The RHash acts as the lock to the vault, while the preim-

age is the key. If we are given an RHash from a preimage that matches

our HTLC’s RHash, the HTLC unlocks, much like a key unlocking a door

that has a matching lock. In effect, the open HTLC can now be accessed,

and its contents become available to the user, as displayed in Figure 6.

Most importantly, HTLCs are paired together for the purpose of atomic

swaps, so that if one HTLC opens, the other does too. The link between

HTLC pairs is what helps uphold their integrity for both parties invovled.

In our example, Alice and Bob’s transaction could be properly executed

using HTLCs. Alice would store her 0.1 Bitcoin in an HTLC, and Bob

would store his 10 Litecoin in another HTLC, both using the same RHash

that Bob would be responsible for generating. The same RHash is used

to eliminate the potential vulnerability where one party refuses to make

their preimage public and prevents the other party from opening their cor-

responding HTLC. When either HTLC is opened, the preimage used to

generate the correct RHash is published, guaranteeing access to the other

33

HTLC. Both HTLCs act as a commitment to transfer funds, so our system

waits for both commitments to be created, at which point it executes the

exchange. In this example, Bob opens the HTLC containing 0.1 Bitcoin,

reveals the preimage to Alice, and transfers the 0.1 Bitcoin to himself, and

Alice can then choose to open the HTLC containing 10 Litecoin using Bob’s

preimage and transfer that amount to herself, or to leave the Litecoin alone

for Bob to reclaim upon expiration. It is important to note that Bob open-

ing the HTLC with 0.1 Bitcoin then enables Alice to open the HTLC with

10 Litecoin, guaranteeing that both parties gain access to their promised

tokens once one party does. The events occur in this order to prevent an

initiator, in this case Alice, from attempting to subvert the system and

prevent the transfer of funds to Bob after she has received her funds.

In addition, HTLCs are also blockchain compatible. If a channel were

to close with existing HTLCs, the HTLCs would also be broadcast to the

main chain, where they can eventually be resolved. Once an HTLC is on

the main chain, the HTLC sender will have to wait for the the locktime to

be reached to get their funds back upon expiration. The HTLC receiver,

however, can use the preimage at any time to unlock the HTLC themselves

and recover the funds as the receiver. If an HTLC is opened on chain, the

preimage will still be publicized so that the other HTLC in the HTLC pair

can then also be opened by its corresponding receiver.

With this mechanism in place, users are able to perform peer-to-peer

cross-chain exchanges without a trusted third party, reestablishing blockchains’

decentralized nature. Users are also able to control how much their tokens

are worth, determining their valuations in their exchange agreements, and

keep that value secure in their own hands. The Lightning Network cross-

chain exchange expands the capabilities of the blockchain ecosystem and

34

creates growth potential through connectivity using hashed timelock con-

tracts.

35

This page intentionally left blank.

36

5 System Overview

To create an effective currency exchange process, our system introduces

four new Lightning Network commands: the Price command, the Compare

command, the Exchange command, and the Respond command.

5.1 Price Command

The Price command is a simple channel command that allows users to

look up the current market value (in USD) of any cryptocurrency available

at www.coinranking.com. The command requires the user to provide a

currency name. With a currency name, our system connects to the coin-

ranking site, parses the HTML code for specific currency listing fields, and

compares the given currency name against the listed currencies on the site.

If the name exists, our program retrieves the listed, continuously updated

market price, prints it on the user’s terminal, and disconnects from the

coinranking site.

5.2 Compare Command

The Compare command is another user oriented channel command that

builds on the Price command and allows users to generate an exchange rate

for any two cryptocurrencies available at www.coinranking.com. The com-

mand requires the user to provide two currency names. With both of those

names, our system uses the Price command functionality to retrieve the

current market value of each desired currency, and then perform some sim-

ple arithmetic to return the compared value of one unit of the first currency

to the corresponding amount of units of the second currency (without fees

included).

37

We developed both of these commands in hopes of enhancing the ex-

change experience for users on our platform. Our exchange protocol al-

lows for users to decide their own exchange amounts. With the Price and

Compare commands, we hope to empower our users further and provide

information facilitating reasonable exchanges, improving the exchange at-

mosphere on the Lightning Network.

5.3 Exchange Command

The Exchange command is the first of the two commands we developed

to perform cross-chain exchanges. The command requires the user to pro-

vide the channel with the first desired currency, an amount for the initiator

to send on that channel, the channel with the second desired currency, and

an amount for the acceptor to send on that channel. The parameters can

be better understood in Figure 7. This command acts as a request. Con-

tinuing the example from the HTLC section, if Alice wants to exchange

Bitcoin for Litecoin with Bob, she would input “exchange 1 10,000,000

2 1,000,000,000”. This means that Alice would send her 0.1 Bitcoin (or

10,000,000 Satoshi) in channel one, and Bob would send his 10 Litecoin (or

1,000,000,000 Litoshi) in channel two. The coin types and value recipients

are implied based on the input channels and the command parameter order.

The first channel is implied to be the one where the initiator (Alice) will

send funds, which she knows to be Bitcoin. The second channel is implied

to be the one where the acceptor (Bob) will send funds, which Alice also

knows to be Litecoin. This command acts simply as a request, so after

Alice enters the command, her node relays the request information to Bob

across the first channel that Alice specified.

The information is all converted to bytes, a preceding indicator is set to

38

Figure 7: Lightning Network input “exchange 1 10,000,000 2 10” visual
representation between Alice and Bob, with the Bitcoin value represented
in Satoshi.

flag what function should handle the message once it is reconverted, and the

message is finally sent from Alice to Bob. All nodes on the network have a

programmed message listener8, so Bob’s Lightning Network node’s listener

function will detect the incoming message from Alice. The listener converts

the message from bytes back into its original format, and uses the preceding

indicator to hand off the information to the exchange request handler. The

handler then prints the request information on Bob’s Lightning Network

terminal along with an expiration time and a randomly generated request

ID.

The expiration time is set in our implementation to be one minute after

the request is initiated (chosen to prevent sizable arbitrage opportunities).

The request ID is generated from a random selection of 20 alphanumeric

characters. At this point the fate of this transaction is in Bob’s hands, but

the last thing that the Exchange command is responsible for is monitoring

the expiration time. If there were no expiration time, a malicious party

could leave the request in place until the corresponding currencies fluctu-

ated in value and the exchange would be greatly in the malicious party’s

8Described further in the Appendix.

39

benefit. However, the command is programmed to automatically cancel the

request and prevent Bob or any malicious party from abusing the exchange

system when the expiration time is reached, and leaving Alice’s balance

unaffected.

5.4 Respond Command

The Respond command is a continuation of the Exchange command,

and the command is the second of two commands we developed to perform

cross-chain exchanges. At this point Bob has one minute to decide whether

to accept Alice’s exchange request. He can do one of three things: respond

yes and accept the exchange, respond no and decline it, or let the request

time out.

If Bob thinks the exchange is a fair one, as he does in Figure 8, he can

input “respond YES 3” (with 3 being the request ID). The program checks

that Bob’s acceptance comes in before the expiration time of the request.

If the response is too late, the program notifies Bob that the request has

already expired. If the response comes within the expiration time, the

program then takes all of the information that Alice gave in the exchange

request and begins the token exchange process.

Figure 8: Exchange Respond command example where Bob decides to
accept the exchange.

40

Once Bob inputs “respond YES 3”, his machine handles the request

information, using the initiator amount and acceptor amount to place the

correct value in each HTLC, and the channel ID’s to execute the node

to node messaging, assigning and unlocking the HTLCs. From here on

out, the protocol is broken up into three sections: HTLC creation, HTLC

assignment, and HTLC unlocking.

5.4.1 HTLC Creation

We included two different methods for creating HTLCs, both taking

place on the acceptor’s machine. The first creates an independent HTLC,

and the second creates a dependent one. All independent HTLCs will

exist with a dependent HTLC pair, and vise versa. Both types have four

fields unaffected by dependence: an integer value specifying the exchange

amount, a boolean denoting whether that amount is incoming or outgoing

from the perspective of the acceptor, a channel identifier to allow for more

accurate HTLC assignment, and an expiration time as a fail safe to ensure

that malicious parties cannot abuse any HTLCs (all shown in Figure 6).

The expiration time also serves as a guarantee for the user pledging that

they will reclaim their funds even if the system fails. The fifth and final

field, however, is the HTLC RHash, acting as a lock. As stated in Section

4, the RHash is a hash value that comes from a randomly generated 20

byte preimage (or array), which acts as the key to open the corresponding

HTLC. As shown in Figure 9, our independent HTLC creation scheme

generates a random preimage, hashes it, assigns the hash to the created

HTLC, and stores the preimage in the acceptor’s machine’s memory for

use in the unlocking phase. In our dependent creation scheme, we use

the preimage hash from the recently created independent HTLC to set the

41

dependent HTLC’s RHash and establish the HTLC pair.

Figure 9: HTLC creation process for independent and dependent versions.
Takes place on the acceptor’s machine.

This is important for the exchange process because it creates a connec-

tion between the two HTLCs exchanging value across peers. That connec-

tion prevents one party from receiving funds without sending any in return,

as stated previously. Going back to the Alice and Bob example, when Bob

accepts Alice’s exchange request, the system creates an independent HTLC

promising Bob’s 10 Litecoin to Alice, and then creates a dependent HTLC

promising Alice’s 0.1 Bitcoin to Bob. Both HTLCs have the same hash

lock, which means that the same preimage key can open both as well. The

same preimage and RHash are used because the unlocking and extraction

of funds using a preimage simultaneously sends that preimage to the other

party participating in the exchange, guaranteeing that they can also extract

42

their corresponding funds too.

5.4.2 HTLC Assignment

After HTLC creation, the acceptor continues the exchange process, ver-

ifying the accuracy of the creation process and including the movement of

funds into HTLCs in the co-signed and agreed upon state of each chan-

nel. The acceptor runs checks to ensure that each channel is operating

as expected, and throws an error if either fails9. The acceptor continues

checking the values stored in the HTLCs to ensure that they do not exceed

or fall under the global maximum or minimum value allowed to be traded.

Once they establish channel security and valid HTLC values, the exchange

process now proceeds to state change verification.

Figure 10: Depiction of the message exchanges that make up the cross-chain
exchange procedure. The figure does not take into account any errors that
could occur during the exchange process.

9Failures include the channel not being at rest state, the channel currently executing
another command, the channel no longer existing, etc.

43

The state change verification process consists of three autonomous phases:

the AssignSig phase, the SigRev phase, and the Rev phase. These three

phases are represented by steps 3 through 8 in Figure 10 for HTLC creation,

and are sent once on each channel for each HTLC. Even though steps 3

through 8 start are executed once on each channel, the execution starts on

the acceptor’s machine both times. However, the acceptor marks the pro-

cess as incoming or not incoming based on whether they are initializing the

HTLC that they are supposed to receive or the HTLC that they are sup-

posed to send. To initiate the assignment process, the acceptor constructs

an AssignSig message. The AssignSig phase consists of storing value in

a HTLC and building a transaction with the new proposed balances, the

value stored in the HTLC, and a new signed state. The HTLC value will

be subtracted from the sender’s old balance to generate their new proposed

balance and maintain the overall channel value, and the sender is deter-

mined based on the acceptor’s incoming flag. For the Exchange command,

we use an AssignSig message instead of a DeltaSig message because there

is no delta. Instead, we assign value from the sender to a HTLC, and then

mark that HTLC as incoming for the HTLC recipient. The newly built

transaction is signed and sent as a message to the initiator, who processes

the new proposed transaction and validates the proposed state (checking

for an unchanged channel balance, valid user balance updates, etc). Af-

ter the new state is approved and agreed upon, the recipient also updates

their channel state, signs the proposed change, and sends their agreement

back as a message with the new signed state and a revocation private key,

transitioning into the SigRev phase. In the SigRev phase, the acceptor

considers the initiator’s previous state revoked, and sends a Rev message

back to revoke their own previous state. The initiator receives a private

44

key in the Rev message, and return the channel to a rest state so that it is

ready for later use.

As mentioned, the whole process outlined above happens once on each

channel, having each user store their proposed amount in an HTLC for the

other user. After the process concludes for each channel, both HTLCs are

assigned to their corresponding channel and marked as incoming for the

corresponding recipient, and Bob’s machine initiates the unlocking of the

HTLCs.

Figure 11: HTLC assignment and unlocking process.

5.4.3 HTLC Unlocking

We mentioned previously that the preimage originally used to create

both HTLCs was stored in the acceptor’s machine’s memory, and at this

point, the acceptor’s machine retrieves that preimage and passes it to each

node. The nodes then hash the preimage, and cross reference the produced

45

hash with the corresponding RHash in the stored HTLC marked as incom-

ing for each node. If the hashes do not match, an error is thrown and the

HTLCs remains locked. If both hashes match, both HTLCs are considered

unlocked and the exchange process continues into its final stage.

With both HTLCs considered unlocked, each HTLC recipient is given

the value from their corresponding HTLC and their states are updated.

Instead of the DeltaSig or AssignSig messages, the unlocking phase includes

the OpenSig message. This is because, again, there is no delta, and we are

no longer assigning values to HTLCs, but instead opening HTLCs and

extracting value. The OpenSig message clears both linked HTLCs and

updates the final exchange balances as shown in steps 9 through 14 in

Figure 10, again being sent on each channel for each HTLC. The OpenSig

message is sent on each channel from Bob’s machine, and it checks the

incoming tag in the HTLC to know which node’s balance it should increase

in each channel. Much like the assign process, the OpenSig message sends

a new signed state to the initiator and clears the HTLC. The initiator then

runs the SigRev message to sign the new state and send back a private key,

and the acceptor responds with a Rev message and a private key of their

own.

For a potentially clearer representation of both the assignment and un-

locking phases, Figure 11 breaks down how the system structures behave,

and how the tokens move from one user to another. The diagonal arrows

in that picture show how steps 3-8 and steps 9-14 happen once on each

channel, meaning that the messages in each of those steps are sent two

times in total to set up and clear each HTLC on each channel.

46

5.5 User Interface

As this builds off of the lit implementation of Lightning Network, the

system UI includes terminal operation or the use of several GUIs. Users

keep the same experience that they had on the lit implementation of the

Lightning Network originally, but now have four new functions in their

channel commands.

It is worth noting that our implementation currently relies on user

awareness to a certain extent. Users are in charge of understanding the for-

mat of the Exchange commands, and in turn, understanding exactly what

currencies they are potentially exchanging and with whom. Both of those

components are implied based on the selected channels and the order in

which the channel/amount appear in the input command. Although these

specifications are explained in the lit command guide accessed through the

Help command, it admittedly is not as naturally intuitive as we’d hope it

to be. However, the focus on of our work to date has been on the protocol

implementation.

Another important detail that is not directly communicated but that we

would like to point out is that the initiator and acceptor have no obligation

to accept a request. For example, the acceptor doesn’t need a valid reason

for refusing to accept a request, and the initiator doesn’t need to fulfill a

request that the acceptor accepts. Both parties are free to turn down a

request at any point before tokens have been exchanged.

47

This page intentionally left blank.

48

6 Discussion and Future Work

We have constructed the full cross-chain exchange protocol pipeline

on the Lightning Network as a proof of concept, and it remains future

work to merge our developments to the main Lightning Network code base.

Unfortunately, we did not have time to test the system, and we acknowledge

that although the base functionality is implemented, the system is by no

means ready for public use. If we had more time, we would simulate live

exchanges across various different chains, focusing on testing of edge case

inputs, and we would attempt to optimize the system further based on our

results.

6.1 Future Work

To add onto the work we cover in this paper, we would focus on improv-

ing the following: system fault tolerance, HTLC revocation, non-currency

chain communication protocol10, a more friendly user interface, exchange

channel hopping functionality, and system generated exchange rates.

6.1.1 Fault Tolerance

As stated in Section 6.1, the exchange process still lacks the ability

to be fully functional in live settings. Our code pipeline does not share

the concurrency checks and balances that exist throughout the rest of the

Lightning Network yet, so we must add checks into each step of the Ex-

change command pipeline to cross reference current channel states and

assess process misalignment.

10We imagine an ecosystem where individuals can share information stored on
blockchains with tokens that don’t act as currency, such as IBM’s proposed blockchain
for fraud detection[19].

49

For example, if Bob’s channel receives a SigRev message, but his chan-

nel’s delta currently equals zero, then something has undoubtedly gone

wrong. The contents of the message are what’s important for the system

to be able to execute each step correctly. Bob’s delta being equal to zero

means that his channel is at rest, and is expecting an instruction to initi-

ate some action (such as a change in delta). However, the SigRev message

includes a key and a signature, which would signal that Bob should revoke

the previous state and sign the new state generated based on his node’s

current delta. His current delta being zero, though, means that revoking

the previous state and signing a new state would not make sense as both

would be equal. The exchange process should then be able to evaluate

whether the received SigRev message was a duplicate, whether Bob’s delta

was not properly updated earlier, etc.

This type of message discrepancy can affect many of the step in Figure

10. Currently, we only provide fault tolerance through the HTLC locktime,

which sends funds back to their depositor upon expiration. Although expi-

ration can help users recover their funds, we hope to introduce more checks

and balances to handle problems, such as message discrepancies, for more

of these steps.

6.1.2 HTLC Revocation

Our pipeline is configured to process a full exchange request, but cur-

rently cannot revoke a request once it has been placed. If an error occurs

along the way, as mentioned above, our users would be unable to revoke

the value they stored in the HTLCs. In a finalized implementation of the

exchange process, we envision users being able to unlock HTLCs that hold

tokens belonging to them on chain and on the Lightning Network. We

50

should also make sure that whatever revocation protocol we implement

does not give rise to malicious activity. For example, if Alice and Bob are

exchanging tokens, and Bob receives Alice’s tokens first, there should be

no race condition in which Bob could revoke the tokens he promised Alice

before they are sent to her.

6.1.3 Non-Currency Chain Communication Protocol

With few established non-monetary chains, we did not configure a non-

currency chain communication protocol, but as an open-source impact-

driven system, the Lightning Network is malleable and ready for that

change if and when it comes.

Trading currency provides clarity when exchanging tokens. Alice and

Bob simply have to agree on the tokens’ values based on market prices and

their individual supply and demand. However, we did not get a chance to

tackle the issue of non-currency tokens, which would likely revolve around

the exchange of data.

It is difficult to formulate a marketplace where peers can accurately and

securely exchange data and information. How exactly would users go about

valuing their data? How would users be able to prove that value without

compromising the data they are hoping to exchange? Our initial approach

would leverage the Lightning Network’s existing ability to transfer data

between users, but we would have to improve data security throughout

the network if we hope to guarantee the integrity of valuable data being

exchanged.

51

6.1.4 Improve User Interface

To focus on UX design11 is to focus on a future where people adopt

our technology and integrate it into their lives. Studies have proven that

improved UX leads to success for both the user and the entity building its

user base. Users are able to perform tasks more quickly and efficiently, they

are happier while performing those tasks, and they are even subconsciously

encouraged to return and complete those tasks again[1]. In turn, the user

base grows as retention stays high and a product or service evolves from a

useful tool into an everyday necessity.

Our exchange protocol has potential, but for that potential to be real-

ized, users must feel the same way. The best course of action would be to

update our channel interface to either replace channel numbers with chan-

nel names or contact names, and to denote currency along with amounts.

This would go a long way in appealing to usability for users and would

improve their experience with our system.

6.1.5 Channel Hopping Functionality

Although not covered in this paper, the Lightning Network can simplify

its own network through channel hopping. The channel hopping mecha-

nism allows users to take advantage of the network of channels and transact

with anyone reachable through existing channel connections. For example,

if Alice has a channel open with Bob, and Bob has a channel open with

Charlie, as seen in Figure 12, then Alice could transact with Charlie with-

out having a channel directly with him by sending tokens through Bob.

Channel hopping could dramatically reduce the number of channels that

11UX refers to user experience, and is an ideology that focuses on improving the
experience that all users have with a particular device or technology across all points of
contact in order to improve efficiency, retention, and satisfaction

52

all users would need to have to transact with a high number of peers.

With that being said, our current exchange implementation does not

support channel hopping, but we hope to add channel hopping functionality

in the near future as it simplifies the network and decreases the global

number of channels.

Figure 12: Visual representation of connected channels with hopping func-
tionality.

6.2 Real World Applications

To provide more tangible examples of our solution’s use cases, we cover

what our system’s role would look like in two real world applications. These

are not by any means the only use cases applicable to our project, but they

are two that exemplify our system’s abilities best.

6.2.1 Delivery vs. Payment

A delivery vs. payment (DVP) transaction refers the relationship be-

tween the delivery of goods and the payment of currency in a multiparty

53

transaction[8]. This concept affects businesses to different degrees all across

the world. From the payment and shipment of Alice’s latest Amazon order,

to the payment and exporting of steel from China to the US, to even the

payment and delivery of Bob’s last Starbucks order, we encounter DVP

universally as a product of comparative advantage. For simpler use cases,

such as buying coffee in the morning, DVP occurs at the point of contact

between the two parties and resolves itself easily. At the scale of exporting

goods to another country, however, DVP can pose various challenges.

Similar to our cross-chain exchange platform, third parties fill the void

in this scenario, and offer confirmation services to facilitate the DVP ex-

change. However, a system could be developed to ensure proper payment

at the point of delivery, even in a scenario as complex as exporting and

importing.

We imagine a system configured on hand held devices running our Light-

ning Network off-chain. These devices could then read and confirm bar-

codes printed on the goods themselves or on their shipping containers, and

communicate within the Lightning Network channel to confirm their cur-

rent owner. For example, Alice could scan a barcode and establish her

ownership of those goods as a token in a channel. If Bob was the peer in

that channel, she could send him the goods, placing them in an HTLC,

and in another channel with Bob, have him place some amount of BTC

in exchange. Both tokens would be held in their respective HTLCs until

Bob received the goods, scanned the barcode, unlocked both HTLCs, and

transferred both sets of tokens to their new respective owners. If Bob re-

ceived the goods but refused to scan the barcode, Alice could cancel the

HTLC exchange, reclaim her token representing her goods, and pursue le-

gal action as she has proof of ownership of the goods. Now replace Alice

54

and Bob with China and the US, and the system’s potential seems more

promising.

We admit that this is a simplified hypothesis, but it serves as a use case

example that could potentially simplify and improve the DVP environment.

6.2.2 Currency Exchange

As mentioned, currency exchange is a clear application for this project.

Exchanges already exist that fulfill most needs for this use case, but as cov-

ered in Section 2, they create friction in an ecosystem designed to be fric-

tionless. Our solution fosters a monetary exchange ecosystem in which third

party systems would no longer be needed to facilitate currency exchanges.

Empowering individuals in the network to execute exchanges themselves,

our decentralized currency exchange expands financial inclusion in a scal-

able fashion, a driving force for economic growth and development[12].

Examining cryptocurrency’s financial inclusion effects in Nigeria high-

lights the extent to which this type of technology could serve as an economic

catalyst. Of Nigeria’s 180 million people, only 17% (about 30 million) have

proper access to financial services (such as bank accounts). The majority

of these 30 million individuals struggle to deposit more than $4 a week due

to lack of trust in the integrity of banks and the financial system, yet Pax-

ful, a Bitcoin supplier, now handles over $10 million a week in transactions

between Nigeria and China alone. Paxful opened the door for thousands of

individuals unable to meet financial requirements to participate and con-

tribute to the Nigerian economy[23]. Involving these previously ignored

parties is shown to hold valuable potential and is a value that we hope our

project can eventually contribute[12].

55

This page intentionally left blank.

56

7 Conclusion

In this paper, we established a foundation for the peer to peer exchange

process across blockchains, eliminating the need for trusted third parties

and reaffirming the decentralized nature of blockchains. Trusted third par-

ties filled the market demand for intermediaries facilitating the exchange

of tokens from one blockchain to another, but they proved to be risky in-

stitutions that incurred substantial financial losses. The same parties also

served as centralizing agents, stunting the blockchain ecosystem’s funda-

mental decentralized nature. Working off of the existing Lighting Network

code base, we developed a cross-chain exchange protocol that can also

operate off-chain. Our system allows users to transact across compatible

blockchains, and to do so on their own terms. The software implemented

in this thesis can be accessed through the link in the Appendix.

Our work is a good first step forward, but we understand that there

is more to be done to improve the peer to peer exchange process across

blockchains. The system we developed establishes the foundation, but we

are excited to see what changes and improvements are made to strengthen

individuals, and in turn the whole, through the decentralized efforts of the

blockchain ecosystem.

Individuals no longer depend on obscure third parties to enable the

exchange of one token for another. Anyone with a computer now has the

ability to transact across blockchains independently, rekindling blockchain’s

decentralization spirit and liberating valuable dead capital.

57

This page intentionally left blank.

58

8 Bibliography

[1] Wilbert O Galitz. The Essential Guide to User Interface Design:
An Introduction to GUI Design. Wiley Publishing, Inc., 1997. isbn:
9780470053423.

[2] Primavera De Filippi Aaron Wright. Decentralized Blockchain Tech-
nology and the Rise of Lex Cryptographia. url: https : / / www .

intgovforum.org/cms/wks2015/uploads/proposal_background_

paper/SSRN-id2580664.pdf.

[3] John D. Halamka Ariel Ekblaw Asaph Azaria. A Case Study for
Blockchain in Healthcare: MedRec Prototype for Electronic Health
Records and Medical Research Data. url: https://www.healthit.
gov/sites/default/files/5- 56- onc_blockchainchallenge_

mitwhitepaper.pdf.

[4] Vitalik Buterin. Ethereum White Paper A Next Generation Smart
Contract and Decentralized Application Platform. url: http://www.
the- blockchain.com/docs/Ethereum_white_paper- a_next_

generation_smart_contract_and_decentralized_application_

platform-vitalik-buterin.pdf.

[5] Bit Info Charts. Bitcoin Avg. Transaction Fee Historical Chart. url:
https://bitinfocharts.com/comparison/bitcoin-transactionfees.

html.

[6] Bit Info Charts. Bitcoin Transactions Historical Chart. url: https:
//bitinfocharts.com/comparison/bitcoin-transactions.html.

[7] Adam Kaleb Ernest. The Key to Unlocking the Black Box: Why the
World Needs a Transparant DAC. url: https://followmyvote.

com/wp-content/uploads/2014/08/The-Key-To-Unlocking-The-

Black-Box-Follow-My-Vote.pdf.

[8] Bank of Japan European Central Bank. Securities Settlement Sys-
tems: Delivery-Versus-Payment in a Distributed Ledger Environment.
url: https://www.ecb.europa.eu/pub/pdf/other/stella_

project_report_march_2018.pdf.

[9] Australian Government Department of Foreign Affairs and Trade.
Saudi Arabia. url: http : / / dfat . gov . au / trade / resources /

documents/saud.pdf.

59

[10] Michel Rauchs Garrick Hileman. Global Cryptocurrency Benchmark-
ing Study. url: https://www.jbs.cam.ac.uk/fileadmin/user_
upload/research/centres/alternative- finance/downloads/

2017-global-cryptocurrency-benchmarking-study.pdf.

[11] Andrew Gazdecki. The First Ethereum ¡¿ Bitcoin Atomic Swap. url:
https : / / blog . altcoin . io / the - first - ethereum - bitcoin -

atomic-swap-79befb8373a8.

[12] Adegbola Dare Harley Tega Williams Adetoso J. Adegoke. Role of
Financial Inclusion in Economic Growth and Poverty Reduction in
a Developing Economy. url: https://www.researchgate.net/

publication/321197681_ROLE_OF_FINANCIAL_INCLUSION_IN_

ECONOMIC_GROWTH_AND_POVERTY_REDUCTION_IN_A_DEVELOPING_

ECONOMY.

[13] Stan Higgins. Cryptsy CEO Stole Millions from Exchange, Court Re-
ceiver Alleges. url: https://www.coindesk.com/cryptsy-ceo-
millions-digital-currency-steal/.

[14] IBM. The Benefits of Blockchain to Supply Chain Networks. url:
https://www-01.ibm.com/software/commerce/offers/pdfs/

Blockchain_3-15-2017.pdf.

[15] The Levin Institute. Trade and Globalization. url: http://www.

globalization101.org/uploads/File/Trade/tradeall.pdf.

[16] Peter Loop. Moving to Distributed Systems: Blockchain and the Stan-
dards Opportunity. url: https://www.infosys.com/insights/

services - being - digital / Documents / moving - distributed -

systems.pdf.

[17] Carola McGiffert. Chinese Soft Power and Its Implications for the
United States. url: https : / / csis - prod . s3 . amazonaws . com /

s3fs-public/legacy_files/files/media/csis/pubs/090403_

mcgiffert_chinesesoftpower_web.pdf.

[18] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
url: https://bitcoin.org/bitcoin.pdf.

[19] Dr. Indranil Nath. Fight Insurance Fraud: Data Sharing With Blockchain
Technology. url: https://www-01.ibm.com/common/ssi/cgi-
bin/ssialias?htmlfid=IUW03049USEN.

60

[20] Alessandro Nicita. Exchange Rates, International Trade and Trade
Policies. url: http://unctad.org/en/PublicationsLibrary/

itcdtab57_en.pdf.

[21] Pramod Kumar Rajesh Chaudhury Udhaya Kumar. Foreign Exchange
Markets. url: http : / / www . pondiuni . edu . in / storage / dde /

downloads/ibiv_forex.pdf.

[22] David Scutt. CHARTS: Here’s How Much Currency is Traded Every
Day. url: https://www.businessinsider.com.au/charts-heres-
how-much-currency-is-traded-on-average-every-day-2016-9.

[23] Allan Smith. Bitcoin is Becoming a Tool for Financial Inclusion in
Africa. url: https://www.huffingtonpost.com/entry/bitcoin-
is - becoming - a - tool - for - financial - inclusion _ us _ 5a0e %

20f83be4b0e30a9585062c.

[24] Joseph Poon Thaddeus Dryja. The Bitcoin Lightning Network: Scal-
able Off-Chain Instant Payments. url: https://lightning.network/
lightning-network-paper.pdf.

[25] Aaron van Wirdum. The Lightning Network Now Supports Transac-
tions Across Blockchains. url: https://www.nasdaq.com/article/
the-lightning-network-now-supports-transactions-across-

blockchains-cm878904.

[26] Jake Yocom-Piatt. On-Chain Atomic Swaps. url: https://blog.
decred.org/2017/09/20/On-Chain-Atomic-Swaps/.

61

This page intentionally left blank.

62

9 Appendix

README.md

Lightning Network Exchange Command GitHub Repo:

https://github.com/jmathus/lit/tree/HTLCswaps

Our project code can be found at the repo above, and here, a quick
overview is as follows:

The command starts in the lit-af.go file at line 115. This line initializes
a continuous for loop that listens for user input. The user input is read,
split by white space, and sent to the shell.go file. The shell file parses
the inputs, checking the first item in the split string list and comparing it
against all existing commands. This file is the first point where our Price,
Compare, Exchange, and Respond commands are recognized.

If any of the commands are recognized, all input information is for-
warded to the chancmds.go file under the lit-af directory, where the inputs
are converted to their proper Golang typing. The Price and Compare com-
mands are both fully executed here, accessing the previously mentioned
website and retrieving the desired information. The Exchange and Re-
spond commands, however, continue execution past this file.

Once converted, the information is passed to and RPC call in the
chancmds.go file under the litrpc directory for those two commands. Both
functions share the commands’ name, and both process the given inputs
(checking for improper input format such as negative values, incorrect re-
sponse values, etc.) before loading the correct user channels for command
execution. The Exchange RPC function uses the two loaded channels
and the input Exchange command amounts to create a message with the
SendExchangeRequest() function in the exchange.go file in the qln direc-
tory. SendExchangeRequest() builds a request message (as we defined in
msglib.go under the lnutil directory) and forwards it to the node’s Om-
niOut, starting the messaging phase.

The OutMessager() listens for and handles all OmniOut messages, send-
ing them out to the network. To process incoming messages, each node has
a LNDCReader() in the msghandler.go file under the qln directory that lis-
tens and parses incoming messages. The parsed messages are then passed
to the PeerHandler() in the same file, which then forwards the message
accordingly.

At this point the messaging phase ends, and the PeerHandler() calls our
ExchangeHandler() at the bottom of the same file. Because it receives an
exchange request message, the handler calls the ExchangeRequestHandler()
in exchange.go, which outputs the command line text seen in Figure 8 on
the acceptor’s terminal.

63

Now the acceptor should respond “YES” or “NO” as seen in Figure
8, and their command will follow the same pipeline up to the RPC in
chancmds.go under litrpc, except this command will invoke the Respond
RPC. The command will do nothing if the acceptor responds “NO”, but
will the exchanging of tokens if the acceptor responds “YES”. This will
once again load the appropriate channels (on which to exchange), and will
create the independent HTLC and dependent HTLC using the makeHTLC-
NoPreimage() and makeHTLCWithPreimage() functions. With the chan-
nels and HTLCs, Respond() then calls AssignHTLC() in exchange.go for
each channel. This function executes the material covered in Section 5.4.2,
and does so in the htlcassign.go file under the qln directory; htlcassign.go
contains the AssignSig, SigRev, and Rev message execution code, and each
message struct and specifications can be found in msglib.go.

After both AssignHTLC() functions terminate, Respond() calls Open-
HTLC() in exchange.go, again, for each channel. This function executes
the material covered in Section 5.4.3, and does so in the htlcopen.go file
under the qln directory; htlcopen.go also contains its own OpenSig, SigRev,
and Rev message execution code, and each message struct and specifica-
tion can also be found in msglib.go. When the two OpenHTLC() functions
terminate, the exchange process is over, and the channels are put back to
rest state.

64

